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ABSTRACT 

The Effect of Chemotherapy on Stromal Components of the Bone Marrow 

Ian Woodrow Hare 

The cells comprising the stromal compartment of the bone marrow microenvironment are 
critical to the maintenance of several homeostatic processes of the body. For example, mesenchymal 
stem cells (MSCs) and osteoblasts are vital to the regulation of differentiation and quiescence of 
hematopoietic cells, maintaining the skeletal system, and regulating tumor microenvironments. In 
addition to contributing to these processes, MSCs display several properties that make them favorable 
for the use in transplantation therapies. The work described herein summarizes the means by which 
chemotherapy damages these cells, and potential consequences of such damage with regard to their 
function. 

Previously, our laboratory has investigated chemotherapy induced damage of osteoblast 
potential to support hematopoiesis, describing an increased presence of tumor growth factor beta 
(TGF-β) and interleukin-6 as contributing factors. We have expanded upon these observations to 
describe damage elicited by etoposide (VP16) and melphalan on the expression of extracellular matrix 
and hematopoietic support proteins in the murine pre-osteoblast cell lines MC3T3E1 and 7F2. We 
showed that chemotherapy dysregulates extracellular matrix (ECM), resulting in reduced type I 
collagen expression in cell lines, as well as altered morphology of the endosteum in VP16 treated 
mice.  In addition, chemotherapy reduced the abundance of hematopoietic support proteins CXCL12 
and osteopontin. Chemotherapy exposure also reduced the expression of osteogenic differentiation 
associated transcription factors, coincident with reduced differentiation potential of pre-osteoblast 
cells. These observations highlight the vulnerability of osteoblasts to dysregulation of both 
hematopoietic support and osteogenic functions following chemotherapy exposure. 

In the second study, we expanded our evaluation of stromal cell vulnerability to chemotherapy 
to mesenchymal stem cells (MSCs). MSCs are beginning to be utilized clinically for transplantation 
therapies, a process which requires in vitro expansion of cells prior to patient administration. To 
determine whether in vitro expansion affects the susceptibility of MSCs to chemotherapy stress, we 
evaluated the cellular response to etoposide (VP16) at various passages in vitro. Although passaging 
did not influence the susceptibility of MSCs to VP16, we found the repair of VP16 induced DNA 
damage was altered with extended passage. Exposure of MSCs to VP16 reduced homologous 
recombination (HR) associated transcripts, a phenomenon that was augmented with passage in vitro. 
Using plasmid based reporter assays, we found that HR mediated repair was reduced in untreated 
cells, and MSCs were less able to increase non-homologous end joining (NHEJ) following VP16 after 
extended passage. These results indicated an alteration of the ability of passaged MSCs to perform 
DNA repair following VP16 stress, indicating that MSCs should not be passaged too extensively prior 
to utilization for transplantation. 

In contrast to the beneficial aspects of MSC function during MSC transplantation, MSCs can 
display pathogenic interactions with their surrounding environments, such as during cancer 
progression. In the case of the tumor microenvironment, MSCs have been shown to regulate tumor 
phenotype through the secretion of various signaling molecules. For example, the Wnt signaling 
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pathway has been shown to regulate the phenotype of certain tumors. We investigated the expression 
of Wnt signaling molecules by MSCs after chemotherapy exposure and found that Dkk-1, a secreted 
inhibitor of Wnt signaling, was increased following exposure to VP16, melphalan, and 5-fluorouracil. 
Through the use of chemical inhibitors and activators of p53, as well as siRNA silencing, we showed 
that Dkk-1 elevations in MSCs after chemotherapy were mediated by p53, consistent with the 
published presence of a p53 promoter element within the DKK1 promoter. These results suggested 
the potential for MSC derived Dkk-1 to elicit negative effects on patients harboring Dkk-1 responsive 
tumors, and the possible approach of targeting Dkk-1 pharmacologically in these patients. 

Collectively, these findings highlight the dynamic nature of bone marrow derived stromal cells, 
and illustrate that they are responsive to stress in ways that could negatively impact the health of 
patients receiving chemotherapy treatment. Given the numerous processes that are regulated by 
these cells, it is important to identify mechanisms by which chemotherapy elicits damage, providing a 
conceptual framework for developing means of reducing toxicities associated with chemotherapy 
treatment by maintaining the ability of bone marrow derived stromal cells to perform critical functions.
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The bone marrow is a complex environment that supports several homeostatic 

processes within the body. Although hematopoietic cells that arise from the bone marrow have 

been extensively studied, the stromal cells that share the bone marrow niche are less 

understood. The following addresses literature related to the stromal cells which comprise the 

bone marrow, outlines their functions, and addresses what is known regarding how these 

functions are hampered by chemotherapy treatment. 

 

i. Stromal Components of the Bone Marrow 

 The bone marrow is an environment that fosters several critical homeostatic functions in 

mammals. Serving as a primary lymphoid organ for immune cell development, the bone marrow 

provides an environment permissive for the generation immune cells in the human body1. In 

addition, the marrow plays a critical role in the generation of cells necessary for bone 

development, a constitutively active process which assembles and maintains the skeletal 

system2. The regulation of hematopoietic and skeletal activities within the bone marrow is reliant 

on the presence of a multipotent population of mesenchymal derived stromal cells, termed 

mesenchymal stem cells (MSCs), and their progeny. The following provides a partial summary 

of what is currently understood regarding these stromal populations of the bone marrow, and 

how their plasticity is regulated within the bone marrow microenvironment. 

General Architecture of the Bone Marrow  

 Bone marrow is a tissue comprised of hematopoietic, mesenchymal, endothelial, and 

neural derived cells encased by cortical bone (Figure 1). The marrow can be defined as the 

contents of this ring of cortical bone, and is heavily vascularized. The center of the marrow 

contains a medullary artery and central sinus, with branching vasculature that travels throughout 

the marrow and bone regions3. Gaps between the cortical bone and vasculature are filled by 
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various populations of bone marrow stromal cells, providing a cellular framework which secretes 

extracellular matrix consisting of, but not limited to, collagen, laminin, and fibronectin4 which 

provides a structural framework. Hematopoietic cells comprise the majority of the cellularity of 

the bone marrow, and are almost always within proximity of a stromal or endothelial cell1. 

Sympathetic nerve fibers are also present within the marrow space, and are known to regulate 

hematopoietic functions such as cell egress from the marrow during stem cell mobilization5. 

Mesenchymal Stem Cells 

 Stromal cells of the bone marrow are derived from a multipotent precursor population, 

termed mesenchymal stem cells (MSCs)6. MSCs are fibroblastic cells that are defined 

functionally by their ability to differentiate into osteoblasts, adipocytes, and chondrocytes in vivo, 

and have been documented to form other cell types in vitro, including neurons, muscle cells, 

and beta cells7. While present in adipose, perivascular, dermal, heart, and muscle tissues8, 

MSCs were first discovered in the bone marrow. In 1976, Friedenstein et al. were the first to 

describe stromal cells of the bone marrow when they observed colonies of adherent cells 

displaying a fibroblast morphology following in vitro culture of murine bone marrow9. These cells 

displayed clonal growth characteristics, and displayed the ability to differentiate into osteoblasts 

following transplantation into mice10.  In 1999, Pittenger et al. were the first to comprehensively 

identify MSCs within human bone marrow which were capable of osteogenic, adipogenic, and 

chondrogenic differentiation in vitro, setting the current standard by which MSCs are recognized 

and functionally described6. 

 Although much has been learned recently regarding the biology of MSCs, they are less 

understood and characterized than their hematopoietic counterparts. Many MSC surface 

molecules have been described including CD44, CD90, CD105, c-Kit, and PDGFRα. However, 

these molecules are not specific to MSCs, and share expression with closely associated 
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hematopoietic cell populations of the bone marrow. Combinations of surface markers have been 

useful in isolating stromal cells that have an MSC phenotype. PDGFRα+Sca-1+CD45−TER119− 

cells isolated from murine bone marrow (termed PαS cells)11, 

PDGFRα+CD51+CD45−Ter119−CD31− cells12, and CD105+CD140a+ CD45−Ter119−CD31−13 cells 

have been shown to have the ability to differentiate into osteoblasts, adipocytes, and 

chondrocytes in vitro. However, only PDGFRα+CD51+CD45−Ter119−CD31− cells have been 

described in human marrow, and CD105+CD140a+ CD45−Ter119−CD31− cells can only 

differentiate into osteoblasts when observed in vivo. These observations highlight the functional 

heterogeneity displayed by MSCs, and the necessity for better characterization at a surface 

marker and functional level. 

 Given the challenges inherent to identifying MSCs by surface phenotype, recent 

advances have been made using genetic labeling strategies. Nestin is an intermediate filament 

protein which was first discovered in neural stem cell populations of the brain14. While 

investigating mechanisms of neural crest development, Mendez-Ferrer et al. observed a small 

percentage of stromal cells (< 1%) in the bone marrow of Nestin-GFP mice which were green 

fluorescent protein (GFP) positive. Further evaluation of these cells showed that they displayed 

an MSC phenotype, and were necessary for support of hematopoietic stem cells15. Further 

evaluation of Nestin+ stromal cells has shown that although MSC populations generally are 

enriched for Nestin, this is not unique to MSCs and osteogenic subsets are Nestin+ as well. 

Wong et al. has shown that in vitro osteogenic differentiation of MSCs retains Nestin 

expression, suggesting that the marker is not MSC specific16. In an attempt to find a novel 

mesoderm expressed gene for MSC enumeration, Greenbaum et al. utilized Prx1, a 

transcription factor which is activated during limb bud development17. Prx1-ROSA26 mice 

displayed fluorescence in bone marrow stromal cells with an MSC phenotype. However, 

ROSA26+ osteoblasts and adipocytes were observed as well, showing that Prx1 was a marker 
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of MSCs as well as more differentiated MSC derived stromal subsets within the marrow17. 

Although genetic markers have been found to evaluate MSCs in vivo, there is a great interest in 

identifying genes which are expressed specifically by MSCs, and do not display expression in 

more differentiated MSC derived stromal cells. 

Osteoblasts 

 Osteoblasts are derived from MSCs, and generate bone by the formation and 

mineralization of extracellular matrix (ECM). Osteoblasts are located primarily at bone surfaces 

and arise from MSC precursors that often occupy a similar niche6. Early evaluations of CFU-F 

(Colony Forming Unit – Fibroblast) cells from cultured bone marrow, later understood to contain 

MSCs, showed that the presence of bone morphogenic protein (BMP) could induce cells to 

mineralize ECM18. The heterogeneity of CFU-F was later appreciated when a population of 

CFU-F shown to express bone associated proteins (osteocalcin and osteonectin) was observed 

to differ in size, response to osteogenic stimuli, and proliferative capacity, corresponding to 

osteoprogenitor cells of varying degrees of differentiation19. The genetic regulation of osteogenic 

differentiation was poorly understood until Komori et al. showed that mice deficient in Cbfa1, the 

gene that encodes Runt-related transcription factor (RunX2), died shortly after birth and 

displayed reduced skeletal development. Stromal cells isolated from Cbfa1+/+ bone marrow 

displayed elevated alkaline phosphatase (ALP) activity and increased osteocalcin expression 

relative to Cbfa1+/- marrow, indicative of reduced osteogenic potential in stromal cells with 

decreased Cbfa120. RunX2 is therefore necessary for osteogenic differentiation of MSCs, 

defining the step from an MSC to pre-osteoblast phenotype by initiating the expression of 

proteins containing an osteoblast-specific cis-acting element (OSE2) in their promoter regions. 

The promoter or many proteins vital to osteogenesis contain an OSE2, such as type 1 collagen 

alpha 1 (Col1A1), osteopontin (OPN), osteocalcin (OCN), and osterix (OSX)21. Col1A1, OPN, 

and OCN are necessary for the formation and mineralization of ECM during osteogenesis 
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(described in section ii of this literature review). OSX is a zinc finger transcription factor that has 

been shown to be expressed following RunX2 in the progression towards a mature osteoblast 

phenotype22. OSX-/- mice have similar skeletal deformities observed in Cbfa1-/- mice. RunX2 can 

still be detected in mesenchymal tissues of OSX-/- mice, however, OSX cannot be detected in 

Cbfa1-/- mice, indicating that OSX is regulated downstream of RunX2 and is required for 

differentiation to a mature osteoblast phenotype23.  

 Mature osteoblasts differentiate into osteocytes, terminally differentiated stromal cells 

that reside deeper within bone tissue than osteoblasts and MSCs24. Osteocytes are encased by 

bone matrix, a process thought be a result of osteoblasts immobilizing the osteocyte within 

layers of ECM25. However, others have postulated that osteocyte burrowing is a more active 

process, involving the cleavage of bone matrix by osteocyte matrix metalloproteinase-14 (MMP-

14) and migration deep within bone tissue26. The progression from an osteoblast to osteocyte 

phenotype is less understood than the mechanisms by which less-differentiated 

osteoprogenitors mature, however, osteocyte gene expression has been described and is 

distinct from mature osteoblasts24. Although osteocytes express osteocalcin similarly to mature 

osteoblasts, RunX2, OSX, OPN, Col1A1, and ALP expression is reduced relative to 

osteoblasts22.  

Adipocytes 

 Adipocytes are the primary cellular component of adipose tissue, storing glucose as 

triglycerides for release into the bloodstream in the form of fatty acids when the body is in need 

of energy27. The cellular morphology of adipocytes is different from MSCs, appearing slightly 

larger, round in shape, and containing cytosolic lipid droplets which are visible under brightfield 

microscopy. Ulf Smith was the first to document the presence of stromal cells in adipose tissue, 

capable of differentiating into adipocytes in vitro in the presence of human serum28.  
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 Adipogenic differentiation is dependent on the expression of peroxisome proliferator-

activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα)29. PPARγ and 

C/EBPα are transcription factors that activate the expression of genes necessary for adipocyte 

function, such as glucose transporter 4, lipoprotein lipase, and fatty acid synthase30. Insulin and 

glucocorticoids have been shown to induce PPARγ and C/EBPα expression in human MSCs31. 

Embryonic stem cells from PPARγ-/- mice are unable to differentiate into adipocytes32, and 

although C/EBPα-/- stromal cells are capable of differentiating into adipocytes, they are not as 

robust as wild type cells33. These results indicate that both transcription factors are necessary 

for normal adipocyte function; however, it is PPARγ that predominantly drives adipogenic 

differentiation of MSCs. 

Chondrocytes 

 Similar to bone, cartilage serves as an organic matrix with supportive properties that are 

conducive to loading and bearing weight; however, the ECM components that comprise 

cartilage are more flexible than bone, and are generally less mineralized. Chondrocytes are 

responsible for the generation of cartilage, forming ECM in a similar manner as osteoblasts, 

only secreting different molecules which are ultimately less rigid34. Chondrocyte ECM is 

primarily composed of collagen type 2A (Col2A1) and aggrecan, a proteoglycan that has a high 

affinity for hyaluronic acid (HA)35. High density culture of MSCs with dexamethasone and 

transforming growth factor β (TGF- β) has been shown to induce chondrogenic differentiation in 

vitro36. SRY-type high mobility group box 9 (SOX9), which has been shown to be expressed in 

MSCs following TGF- β exposure, has been described as an early transcription factor driving 

chondrogenic differentiation, promoting the expression of Col2A137. 

Other Mesenchymal Stem Cell Derived Cell Types 
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 Although not as well described in the literature as osteoblasts, adipocytes, and 

chondrocytes, MSCs have been observed to differentiate into other cell types as well. Toma et 

al. presented evidence of MSC differentiation into cardiomyocytes in vivo, following 

transplantation of human LacZ+ MSCs into immunodeficient mice38. In vitro culture of MSCs with 

5-azacytidine has been shown to alter cellular morphology and induce the expression of 

Myogenic Differentiation 1 (MyoD1), a myogenic differentiation marker39. In addition, retroviral 

expression of pancreatic duodenal homeobox 1 (Pdx1) in human MSCs was shown to activate 

the expression of insulin following glucose exposure, similar to the function of pancreatic beta 

cells40. These findings indicate that MSCs are a multipotent population of cells, potentially 

capable of differentiating into numerous clinically beneficial cell types (described in more detail 

in part ii of this literature review). 

 

ii. Bone Marrow Stromal Cell Function and Clinical Application 

Hematopoiesis 

 Hematopoiesis is the process by which stem and progenitor cells of the immune system 

differentiate into the cellular constituents of blood. The hematopoietic stem cell (HSC) is the 

most immature of hematopoietic cells, and is capable of differentiation into all hematopoietic cell 

types and performing asymmetric division (Figure 2). Vertebrates harbor a deeply quiescent 

pool of HSCs that are capable of differentiating into myeloid and lymphoid progenitor cell 

populations that lose the ability to self-renew, but are more proliferative than the primitive 

HSC41. There is a finite number of HSCs in the bone marrow of vertebrates. When proliferation 

of this stem cell pool is not properly regulated, the pool can be depleted, a phenomenon known 

as exhaustion42.  
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The differentiation and proliferation of HSC and other hematopoietic progenitor cells are 

regulated in part by the bone marrow microenvironment. The concept of a niche that regulates 

the function of stem cells was first hypothesized by Schofield43, built upon the observations that 

hematopoietic cells occupy distinct regions of the bone marrow44 and the requirement of bone 

marrow stromal cells for ex vivo maintenance of hematopoietic cells45. In 2004, Visnjic et al. 

suggested that osteoblasts were the stromal population responsible for supporting HSC when 

they observed a great reduction in HSCs as well as more differentiated lymphoid and myeloid 

cells following in vivo ablation of osteoblasts46. This notion was revisited by Greenbaum and 

Ding et al., performing similar studies that involved evaluating the abundance of hematopoietic 

cell populations in mice where C-X-C motif chemokine 12 (CXCL12) was ablated from various 

stromal populations in vivo. CXCL12 is a chemokine that is expressed by bone marrow stromal 

cells and plays a critical role in the recruitment and retention of HSCs and progenitor cells to the 

bone marrow niche47. Ablation of CXCL12 from MSC populations resulted in a release of HSCs 

from the bone marrow niche17, while ablation of CXCL12 from osteoblasts only dispersed 

common lymphoid progenitor (CLP) cells48, suggesting that MSCs contribute to the 

maintenance of HSC support while osteoblasts are only responsible for supporting CLPs. 

Stromal cells of the bone marrow secrete many factors that regulate the quiescence and 

differentiation of HSCs. TGF-β and OPN have both been shown to reduce the proliferation of 

HSCs49,50. When there is a necessity for blood cell generation, MSC and osteoblast derived 

stem cell factor (SCF), interleukin-3 (IL-3) and Fms-like tyrosine kinase 3 (Flt-3) are some of the 

factors that support the proliferation and survival of HSCs and committed progenitor cells51. In 

addition, granulocyte, granulocyte-macrophage, and macrophage colony stimulating factors (G-

CSF, GM-CSF, and M-CSF) have been shown to promote the differentiation of HSCs into 

neutrophils, neutrophils and macrophages, or macrophages (respectively)52. The balance 

between proliferation and differentiation is absolutely critical to steady state hematopoiesis and 



www.manaraa.com

 10 

highlights the potential of any dysfunction of elements of the supportive marrow 

microenvironment to contribute to dysregulated immune system function. 

The ECM that is secreted by MSCs and osteoblasts plays an indirect role in influencing 

the bioavailability of cytokines to (such as TGF-β53 and OPN50) to HSCs in the bone marrow 

microenvironment54. MSCs and osteoblasts also secrete proteoglycans into ECM which can 

modulate the stability of cytokine gradients. For example, stromal derived heparin sulfate has 

been shown to be necessary for the stabilization of GM-CSF55, IL-356, and CXCL1257 in the 

bone marrow. Saez et al. recently utilized the CXCL12 modulating potential of heparin sulfate to 

mobilize HSCs by inhibiting the biosynthesis of heparin sulfate specifically in osteoprogenitor 

cells58. HA is another proteoglycan expressed by MSCs and osteoblasts, and facilitates binding 

of hematopoietic cells to the bone marrow niche via CD44 expressed on the surface of 

hematopoietic cells59. Other MSC and osteoblast expressed surface proteins that mediate direct 

binding to hematopoietic cells include vascular cell adhesion protein 1 (VCAM-1), intracellular 

adhesion molecule 1 (ICAM-1), and thymocyte antigen 1 (Thy-1)59, and are necessary for the 

anchoring of hematopoietic cells to supportive stromal cells within the bone marrow niche.   

Many studies have indicated that this physical interaction is absolutely essential for 

hematopoietic cell development, and cannot be substituted for by any combination of cytokines 

or growth factors1. 

Osteogenesis 

 Prior to the understanding that bone marrow osteoblasts and osteoprogenitor cells 

contribute to hematopoietic support, their primary described function was osteogenesis. 

Osteogenesis is a process that involves the differentiation of MSCs (described in section i of this 

literature review) to osteoblasts, secreting an abundance of ECM which is subsequently 

mineralized, resulting in the dense bone tissue which comprises our skeletal system2.  
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The organic component of bone is referred to as osteoid, and consists of osteoblast 

secreted ECM and ECM binding proteins. Osteoid accounts for fifty percent of bone volume60. 

The predominant component of osteoblast ECM is Col1A1, contributing to ninety percent of 

osteoid2. The high tensile strength of collagen confers strength to bone tissue, while remaining 

permissive to a small degree of flexibility61. Although less abundant than Col1A1 in bone, 

osteoblast secreted ECM proteins are essential for several components of bone function. OCN 

is a non-collagenous protein produced by mature osteoblasts and osteocytes, and has been 

shown to play a structural role by binding tightly to Col1A1 and hydroxyapatite 

(Ca10(PO4)6(OH)2), a crystalized from of calcium and phosphate that comprises the majority of 

bone mineral density62. OPN is a highly negatively charged ECM protein that has also been 

described as playing a structural role in osteoblast ECM through interactions with OCN63. OCN 

has also been shown to sequester calcium, serving as a negative regulator of bone 

mineralization64. 

Following the formation of osteoid, osteoblasts regulate the process by which osteoid is 

mineralized. The mineralization of osteoid provides compression strength and the hardness that 

is characteristic of bone tissue65. The majority of the inorganic portion of bone is 

hydroxyapatite62. The formation of hydroxyapatite is regulated by various secreted osteoblast 

proteins which can promote its formation or generate the calcium and inorganic phosphate 

necessary for its synthesis. Dentin matrix protein 1 (DMP1) and bone sialoprotein (BSP) are 

nucleating factors, structurally ideal for initiating the crystallization process that forms 

hydroxyapatite in bone66. Alkaline phosphatase (ALP) is abundantly expressed by osteoblasts, 

and cleaves phosphate from various molecular sources such that it can be incorporated into 

hydroxyapatite67. Dietary ascorbic acid also plays a role in maintaining the presence of minerals 

that comprise hydroxyapatite by stabilizing levels of calcium and phosphorus in the blood68. 
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The formation of bone is tightly regulated by various signaling pathways that influence 

the differentiation of MSCs to an osteoblast phenotype and induce the expression of osteoblast 

specific genes. Wnt signaling is known to be a critical regulator of bone development through 

the regulation of β-catenin mediated gene expression activated by various Wnt activating 

ligands binding to Frizzled and low-density lipoprotein receptor-related proteins (LRPs) at the 

surface of the osteoblast69. The first evidence of Wnt signaling regulating bone development 

was described by Gong et al., showing that mutations in the LRP5 gene correlated with patient 

diagnosis of osteoporosis-pseudoglioma syndrome, a genetically acquired disease that is 

associated with very low bone mass and frequent fractures70. This finding was later confirmed 

by Kato et al. in a LRP5-/- mouse model71. Of the 19 Wnt activating ligands expressed by 

humans72, several positively regulate osteogenic differentiation, including Wnt3a73 and 

Wnt10b74. Secreted inhibitors of Wnt signaling also play a role in regulating this response, such 

as dickkopf 1 (Dkk-1), a steric inhibitor of LRP5/6 which is expressed by osteoblasts and 

prevents Wnt induced osteogenic differentiation in vivo75. Soluble frizzled receptor 1 (SFRP1), a 

soluble form of the Frizzled Wnt receptor, quenches Wnt activating ligands in the extracellular 

environment. Bodine et al. observed increased bone mass and osteoblast differentiation in 

SFRP1-/- mice, highlighting the importance of SFRP1 in the regulation of osteogenesis in vivo76. 

Tumor Microenvironment Regulation 

 MSCs were initially discovered in the bone marrow, but are now appreciated to be more 

widely distributed8. Although generally beneficial, the activities of MSCs and MSC derived 

stromal populations can contribute to disease states, such as in the setting of diverse tumor 

microenvironments. The tumor microenvironment can be defined broadly as the cellular 

environment surrounding a tumor. This environment is comprised of tumor cells surrounded by 

normal tissue which often contains MSCs, as well as fibroblasts, vasculature, and immune 

cells77.  Similar to the ways that MSCs regulate the hematopoietic niche, MSCs play a role in 
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regulating the characteristics of a tumor through the expression of cytokines or other signaling 

molecules. For example, co-culture of breast cancer cell lines with MSCs was shown to 

increase the expression of miR-199a, which decreased FOXOP2 and increased metastasis 

when tumor cells were implanted subcutaneously into nude mice78. Conversely, Wang et al. 

showed that MSC derived Oncostatin M (OSM) inhibited tumor growth and metastasis in a 

murine model of lung adenocarcinoma79. These observations highlight the ability of MSCs to 

both positively and negatively regulate the tumor microenvironment. 

 Literature describing the tumor microenvironment often focuses on the activity of cancer 

associated fibroblasts (CAFs), a population of fibroblasts that is considered quite 

heterogeneous, similar to MSCs80. It is believed that CAFs are derived from tissue resident 

MSCs or fibroblasts77, however, some consider MSCs and CAFs as similar cell types that are 

defined by their proximity and their propensity to regulate tumor activity81. Defined qualitatively 

by fibroblast morphology and adjacency to a tumor, CAFs have also been described as 

expressing α-smooth muscle actin (α-SMA), platelet-derived growth factor β (PDGFRβ), and 

fibroblast-specific protein 1 (FSP-1)82. However, these surface markers are expressed on 

MSCs, as well as other cell types within the tumor microenvironment83–85. These observations 

show that MSCs and CAFs are both heterogeneous populations of stromal cells which often 

contribute to the regulation of the tumor microenvironment in similar ways. In addition to MSCs 

and CAFs, osteoblasts have been reported to regulate tumor activity in cancers that originate in 

the bone or marrow (such as acute lymphoblastic leukemia, multiple myeloma, and 

osteosarcoma), or commonly metastasize to them (breast and prostate)79. 

 Although MSCs are distributed in tissues surrounding tumors, it is often observed that 

MSCs actively home from distant anatomical sites to the tumor. This phenomenon has been 

attributed, in part, to the expression of chemotactic cytokines by the tumor, such as CXCL1286 

and interleukin-687. Quante et al. showed that some CAFs surrounding tumors in a murine 
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model of gastric cancer were derived from bone marrow MSCs. Mice were administered GFP+ 

MSCs that efficiently engrafted the bone marrow prior to developing gastric cancer. Once 

gastric tumors developed, over 20% of the cells were α-SMA+GFP+ indicating that MSCs home 

to the marrow to distant tumors, even though tissue resident MSCs were already present88. 

Once attracted to the site of a tumor, MSCs can change gene expression in ways that anchor 

them to the tumor site.  For example, Uchibori et al. observed that high concentrations of tumor 

necrosis factor-α (TNF-α) within the tumor microenvironment induced VCAM-1 expression by 

MSCs, anchoring them around nearby endothelial cells89. 

 Once present within the tumor microenvironment, MSCs can promote tumor growth by 

various mechanisms. MSCs have been shown to secrete cytokines that create a generally 

immune suppressive environment. For example, Patel et al. showed that MSC derived TGF-β 

increased the presence of regulatory T cells that resulted in the inhibition of immune mediated 

tumor clearance of breast cancer cells89. MSCs have also been shown to suppress the 

proliferation of activated CD8+ T cells through the expression of prostaglandin E2 (PGE2), 

indoleamine 2, 3-dioxygenase (IDO) and TGF-β90. In addition, MSCs have been described as 

promoting an anti-inflammatory alternatively activated macrophage (M2) phenotype in a model 

of myocardial infarction91. In addition to suppressing the ability of the immune system to target 

cancerous cells, MSCs can promote angiogenesis. Suzuki reported increased expression of 

angiogenic cytokines in B16 melanoma cells co-cultured with MSCs, as well as increased tumor 

vessel area when B16 cells were co-injected into mice with MSCs (relative to B16 cells alone)92. 

 In vivo work investigating the role of osteoblasts in regulating hematological cancers has 

provided insight into ways osteoblasts can prevent malignancy, and how the initiation of disease 

can be influenced by niche cues. Raaijmakers et al. have shown that deletion of dicer in 

osteoblasts results in the generation of myelodysplastic syndrome93. In addition, the constitutive 

activation of β-catenin in osteoblasts has been shown to initiate acute myeloid leukemia in 
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mice94. These observations serve as evidence for the importance of stromal cells in the 

maintenance of stem cell niches, and the necessity of understanding how perturbations within 

the niche can influence malignancy. 

Mesenchymal Stem Cell Transplantation 

 MSCs display several attributes that have drawn attention to their clinical potential for 

transplantation.  MSCs represent a population of cells that can be obtained from bone marrow, 

adipose, and placental specimens6, then expanded in vitro to generate cells for transplantation 

into humans or animals experiencing diseases caused by dysfunctional mesenchymal tissues or 

inflammation. The well described ability of MSCs to differentiate into osteoblasts, chondrocytes, 

and other stromal cells of the body (discussed earlier in this literature review) led researchers 

and clinicians to investigate the potential utilization of MSCs to treat diseases that involve 

deficiencies of these cell types. Orilc et al. was the first to show that transplanted bone marrow 

depleted of committed hematopoietic lineage marker positive cells (Lin+) homed to murine 

necrotic tissue following myocardial infarction, subsequently repairing the affected ventricle and 

forming almost 70 percent of the tissue after recovery95. Dysfunctional pancreatic beta cells in a 

murine model of diabetes myelitis were rescued by intravenous infusion of MSCs, resulting in 

increased insulin production by pancreatic cells and glucose homeostasis96.  

These findings inspired the first attempt to utilize MSC transplantation in humans. 

Osteogenesis imperfecta (OI) is a severe congenital disease that results in brittle and 

undeveloped bone due to various mutations in the COL1A1 gene. In 2002, Horwitz et al. 

administered allogenic MSCs to six children with OI in an attempt to repopulate their bone 

marrows with MSCs capable of differentiating into functional osteoblasts. The authors found 

evidence of MSC homing to bone and skin, and reported 60-94 percent increases in bone 

growth velocity (relative to age matched controls) six months following transplantation97. 
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Although all of these studies documented the dissemination of transplanted MSCs throughout 

the body, the abundance of MSCs and their progeny were generally limited, indicating a 

technical difficulty regarding the use of this technique clinically. For example, Dominici et al. 

observed 30% of murine bone consisting of GFP+ MSCs shortly after transplantation, 

decreasing to 10% by 52 weeks of age and undetectable at subsequent time points98. This 

observation suggests that multiple transplants of MSCs may be necessary to provide lasting 

treatment effects. Consistent with this notion, Götherström et al. found that prenatal 

administration of allogenic MSCs for the treatment of OI followed by re-transplantation at 19 

months and 8 years of age prolonged the positive effects of treatment in two patients99. These 

results highlight the clinical potential of MSC transplantation, and the necessity of efficient ex 

vivo expansion of cells that maintain critical functions to acquire adequate cell numbers for long 

term clinical benefits. 

As discussed previously in this literature review, MSCs have been documented to have 

immune suppressive properties. MSCs were shown to reduce the proliferative potential of 

activated T-cells and delay the rejection of grafted skin tissue in baboons100. Zappia et al. were 

the first to show that the anti-inflammatory properties of MSCs were capable of reducing the 

severity of disease in a murine model of experimental autoimmune encephalitis when 

administered at the onset of disease101. Transplanted MSCs have also benefited the motor 

function of rats 14 days following stroke, believed in part to be a consequence of reduced 

neuroinflammation by MSCs102. The immune suppressive capabilities of MSCs have been 

utilized to prevent graft vs. host disease (GVHD) in human patients; a Sweedish patient 

experiencing severe treatment-resistant grade IV GVHD from an allogenic bone marrow 

transplant for the treatment of acute lymphoblastic leukemia was administered MSCs twice 

intravenously, resulting in a full recovery one year out from a disease that has a median survival 

of two months103. These results were corroborated  by a larger study showing a 77.7% two year 
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survival-rate for patients with refractory GVHD treated with two administrations of donor 

MSCs104. 

Although favorable results have been observed in animal models and some clinical trials 

of MSC transplantation, no MSC based therapy has currently been approved by the United 

States Food and Drug Administration. Prochymal®, a MSC based stem cell therapy developed 

by Osiris Therapeutics has currently been approved as a first line treatment of acute GVHD in 

Canada, and is currently under Phase III clinical trials for GVHD in the United States 

(clinicaltrials.gov identifier NCT00562497). Clinical trials are also currently active for the 

treatment of Crohn’s disease, type-1 diabetes, and myocardial infarction (clinicaltrials.gov 

identifiers NCT00543374, NCT00690066, and NCT00877903). The technically involved process 

of acquiring MSCs from autologous or allogenic donors, expansion ex vivo, and multiple 

administrations to a patient has hampered the progression of MSC transplantation towards first 

line clinical use105. However, the lack of cures (and often treatments) for the diseases that 

benefit from MSC transplantation have maintained interest in the process since the early 2000’s. 

This unique necessity for ex vivo expansion of MSCs prior to use in stem cell therapies 

highlights the need for a better understanding of how to optimally expand MSCs without altering 

phenotype; it also illustrates the necessity of better understanding this process to ensure the 

optimization of good manufacturing practice during MSC expansion. 

 

iii. Effects of Chemotherapy on Stromal Cell Function 

Regulation of Immune Regeneration 

 Cytotoxic chemotherapy regimens preferentially target proliferative cells, a characteristic 

that enables the killing of tumor cells, but at the expense of healthy proliferative tissues. The 

bone marrow is an example of such a tissue, displaying rapid cellular proliferation to supply the 
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high cellular demand of continuous blood generation. In the context of hematopoietic 

malignancies, this immune cell toxicity can be the intent of therapy, such as during 

myeloablative chemotherapy regimens. Myeloablation serves to eliminate as many of the 

hematopoietic cells of the marrow as possible, providing space for marrow repopulation by 

transplanted hematopoietic cells from an autologous or allogenic source. Although 

hematopoietic donor cells are capable of repopulating the marrow, the process is often slow. 

Following myeloablative chemotherapy and transplantation, deficiencies in immune cell counts 

often persist for more than a year after transplantation106, leaving patients susceptible to anemia 

and infection for an extended period of time. Immune deficiencies can persist in patients for 

years following treatment. For example, women treated for breast cancer have displayed 

deficiencies in vaccine efficacy years after the treatment of their cancers107.  

Although it is possible that these deficits are due to a shortcoming of the transplanted 

hematopoietic cells, it is also possible that the phenomenon is regulated by dysfunction of the 

bone marrow niche. Unlike the transplanted hematopoietic cells, stromal cells of the bone 

marrow experience chemotherapy damage that negatively influences their ability to support 

hematopoietic function. Kemp et al. showed that MSCs isolated from patients treated with high 

dose chemotherapy for hematological malignancies displayed reduced abilities to expand in 

vitro, as well as reduced CD44 expression108.  Dominici et al. observed osteoblasts in the 

endosteal niche becoming highly proliferative shortly after chemotherapy treatment to repair 

damage inflicted upon the anatomical architecture of the bone marrow109. Although damaged 

stromal cells of the bone marrow are quickly replenished, their function has been shown to be 

reduced for a long period of time. For example, Galotto et al. have shown that CFU-F 

frequencies are diminished in patients who have received bone marrow transplantation relative 

to normal controls for up to 12 years following transplantation, and cultured stromal cells from 

these patients are less able to support the long term persistence of HSCs in vitro110. These 
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observations highlight the susceptibility of bone marrow stromal cells to damage that impedes 

their hematopoietic support functions and reminds us of the fact that this population of cells is 

not simply a stable support system but a dynamic, responsive population. 

 Evidence for stromal dysregulation is also present in the context of myelosuppressive 

chemotherapy regimens. When less intensive chemotherapy treatment is needed for the 

treatment of a malignancy, peripheral blood cell counts will drop following therapy, followed by a 

recovery which lasts on the order weeks to months. This phenomenon is referred to as 

myelosuppression, and is more clinically prevalent than myeloablative therapies111. 

Myelosuppressive chemotherapy has been associated with damage of sympathetic nerves of 

the bone marrow, resulting in attenuated hematopoietic recovery112. In addition, Brenet et al. 

showed that 5-fluorouracil treatment of mice resulted in an increase in TGF-β signaling in the 

bone marrow. By inhibiting TGF-β with neutralizing antibodies, the authors were able to promote 

the rate of granulocyte and erythrocyte recovery after chemotherapy treatment113. This 

observation is consistent with several lines of evidence from our laboratory and others outlining 

the suppressive activity of TGF-β on HSCs, as well as the fact that chemotherapy exposure 

increases the expression of active TGF-β by bone marrow stromal cells and osteoblasts114–116. 

Our observations show the likelihood that the increased TGF-β observed by Brenet et al. after 

chemotherapy treatment was in part derived from stromal cells of the bone marrow. This 

observation indicates the potential of pharmacologically targeting niche factors that regulate 

HSCs for chemotherapy associated leukopenia, as opposed to HSCs themselves.  

 The prospect of modulating bone marrow stromal cell derived molecules following 

chemotherapy exposure is a new but developing field. Acceleron has developed Sotatercept®, 

a peptide drug consisting of an activin receptor type IIA domain fused to the Fc portion of 

human IgG1, serving to broadly inhibit TGF-β family extracellular signaling molecules117. 

Sotatercept has shown clinical efficacy for the treatment of chemotherapy induced anemia in 
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Phase II clinical trials118. A better understanding of the signaling pathways that modulate 

hematopoietic regeneration following bone marrow stress is required to determine other 

potential ways to promote immune regeneration in patients who have undergone chemotherapy 

treatment. 

Bone Development 

 Impaired osteogenesis is often overlooked as a toxicity associated with chemotherapy 

treatment. However, deficits in bone formation have been documented across a spectrum of 

cancers treated with various chemotherapeutic agents. Observations in Chapter II of this 

dissertation provide evidence for the alteration of osteoblast function in vitro. Consistent with 

these observations, Georgiou and Davies et al. have shown deficits in the function of 

osteoblasts isolated from rats and humans, respectively, following chemotherapy 

treatment119,120.  

Attenuated osteogenesis following chemotherapy has been documented in vivo as well. 

Tillmann et al. evaluated bone mineral density in children who have been treated with high dose 

chemotherapy for acute lymphoblastic leukemia, showing that chemotherapy treated children 

displayed a decrease in bone mineral density relative to age matched controls, correlating with 

an increased incidence in fractures121.  Women treated with carboplatin, paclitaxel, or cisplatin 

for various gynecological cancers have experienced reduced lumbar bone mineral density one 

year after treatment122. Similar results were observed in men treated for Hodgkin’s lymphoma, 

displaying attenuated bone mineral density in the lumbar spine and forearms as long as 6.8 

years following treatment123. Little is known regarding the mechanism behind chemotherapy 

induced osteogenic deficiencies; more studies are required to understand this phenomenon well 

enough to design therapies that prevent chemotherapy induced toxicities of the skeletal system. 

Summary 
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 The findings described in this literature review illustrate the dynamic nature of stromal 

cells of the bone marrow microenvironment. Playing a role in several homeostatic processes 

within the body, this clinically significant group of cells displays several characteristics that 

justify the need to better understand their biology. For example, the necessity of MSCs to 

regulate the characteristics of other cell populations (such as hematopoietic and tumor 

populations, described earlier in this literature review) underlies the importance in understanding 

how they operate in both normal and stressed conditions. Chapters II, III and IV of this 

dissertation outline distinct changes in MSC and osteoblast cells that are a consequence of 

chemotherapy exposure, a clinically relevant example of systemic stress in vivo. Furthermore, 

Chapter III describes the effects of ex vivo expansion of MSCs, and how this could potentially 

affect MSC function following transplantation into a host for stem cell therapy. Collectively, the 

following will contribute to better understanding mechanisms regarding the response of MSCs to 

chemotherapy stress, providing insight into means by which these responses can be modulated 

to better manage sequelae experienced by patients as a consequence of damaged stromal 

components of the bone marrow microenvironment. 
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Figure 1. Structure of the mammalian femur. 

Image adapted from Nagasawa T. 2006. Microenvironmental niches in the bone marrow 

required for B-cell development. Nature Reviews Immunology. Permission Number: 

3835720017612. 
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Figure 2. Differentiation schema of hematopoietic cells. 

King K and Goodall M. 2010. Inflammatory modulation of HSCs: viewing the HSC as a 

foundation for the immune response. Nature Reviews Immunology. Permission Number: 

3835730219427. 
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Abstract  

 Osteoblasts are a major component of the bone marrow microenvironment which 

provide support for hematopoietic cell development. Functional disruption of any element of the 

bone marrow niche, including osteoblasts, can potentially impair hematopoiesis.  We have 

studied the effect of two widely used drugs with different mechanisms of action, etoposide 

(VP16) and melphalan, on murine osteoblasts at distinct stages of maturation. VP16 and 

melphalan delayed maturation of preosteoblasts and altered CXCL12 protein levels, a key 

regulator of hematopoietic cell homing to the bone marrow. Sublethal concentrations of VP16 

and melphalan also decreased the levels of several transcripts which contribute to the 

composition of the extracellular matrix (ECM) including osteopontin (OPN), osteocalcin (OCN) 

and collagen 1A1 (Col1a1).  The impact of chemotherapy on message and protein levels for 

some targets was not always aligned, suggesting differential responses at the transcription and 

translation or protein stability levels.  Since one of the main functions of a mature osteoblast is 

to synthesize ECM of a defined composition, disruption of the ratio of its components may be 

one mechanism by which chemotherapy affects the ability of osteoblasts to support 

hematopoietic recovery coincident with altered marrow architecture. Collectively, these 

observations suggest that the osteoblast compartment of the marrow hematopoietic niche is 

vulnerable to functional dysregulation by damage imposed by agents frequently used in clinical 

settings. Understanding the mechanistic underpinning of chemotherapy-induced changes on the 

hematopoietic support capacity of the marrow microenvironment may contribute to improved 

strategies to optimize patient recovery post-transplantation. 

 

Keywords: bone marrow microenvironment, osteoblast, extracellular matrix, hematopoietic 

stem cell, chemotherapy 
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Introduction 

 Hematopoietic stem (HSC) and progenitor cells require interaction with their niche in the 

bone marrow microenvironment for regulation of quiescence, cell cycle progression and 

differentiation [1–3]. Several types of cells in the bone marrow provide support to HSC and their 

lineage committed progenitors, including endothelial cells [4,5], CXCL12-abundant reticular cells 

(CAR) [6,7], nestin-positive mesenchymal stem cells (MSC) [8], CD146-positive subendothelial 

osteoprogenitors [9], and osteoblasts [10–12]. There is evidence to suggest that osteoblasts, as 

a defining component of the endosteal space, support HSC and regulate the fate of more 

differentiated hematopoietic progenitors [10,11]. Depletion of osteoblasts in mice profoundly 

affects hematopoiesis, manifested by decreases in HSC as well as lymphoid and myeloid 

progenitors [12], and B-cell commitment and maturation [13].  

 Osteoblasts are derived from MSCs through several somewhat poorly defined 

maturation stages. MSCs differentiate to osteoprogenitor cells through the activation of 

osteoblast-specific transcription factors such as Runx2 and subsequently Osterix (SP7) [14]. 

One of the earliest markers of preosteoblast cells is alkaline phosphatase (ALP) and its 

expression persists in subsequent maturation stages. Preosteoblasts also express Col1a1 

protein, while at later stages they also start to produce OPN and further differentiate to mature 

osteoblasts which synthesize bone matrix [15]. These various markers provide tools to 

characterize specific stages of osteoblast differentiation. 

 In the current study we investigated how osteoblasts are affected by chemotherapy by 

utilizing an in vitro model to include drugs from two distinct classes used in clinical settings; 

Etoposide (VP16) which induces double strand DNA breaks by inhibition of topoisomerase II 

[16] and melphalan as an alkylating agent that damages DNA through crosslinking and the 

addition of adducts [17].  A number of chemotherapy drugs have been documented to 

functionally impair stromal cells in the bone marrow, including 1,3-bis(2-chloroethyl)-1-
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nitrosourea, busulfan, doxorubicin, VP16, metothrexate, and vincristine [18,19] suggesting their 

potential to impair hematopoietic support capacity.  Bone density and colony forming unit 

fibroblasts (CFU-F) were shown to decrease in patients following allogeneic stem cell transplant 

[20]. Earlier work from our laboratory indicated that treatment of primary human osteoblasts with 

VP16 and melphalan activated the TGF-β1 pathway [21], consistent with the finding that bone 

marrow stromal cells established from leukemia patients treated with chemotherapy have 

elevated levels of TGF-β1 [22]. Chemotherapy exposure was also reported to affect osteoblast-

specific proteins including type I collagen and alkaline phosphatase in human primary 

osteoblasts, as well as the ability of mature osteoblasts to mineralize bone [23].  

 In the current study we have demonstrated that chemotherapy exposure decreases 

expression of CXCL12, a key factor mediating homing and hematopoietic cell adhesion in the 

bone marrow niche, while also decreasing differentiation stage-specific synthesis of osteoblast 

components of the ECM including OCN, OPN and Col1a1. Treatment of preosteoblasts with 

VP16 or melphalan impaired their differentiation potential and decreased transcripts associated 

with osteoblast differentiation (Runx2, SP7, and OCN). VP16 and melphalan also altered 

hematopoietic cell support provided by osteoblasts, demonstrated by an increased proportion of 

Lin- Sca1+c-kit+ stem cells and an increased number of viable Sca1-c-kit+IL7R- myeloid 

progenitor cells following co-culture with chemotherapy damaged osteoblasts. Taken together, 

these data indicate that functional dysregulation of the osteoblast component of the bone 

marrow microenvironment might include both chemokine gradient changes as well as altered 

ECM deposition.   

 

Materials and Methods 
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Cell lines, reagents and drug treatment 

 Murine pre-osteoblast cell line MC3T3E1, subclone 4, was purchased from ATCC (ATCC 

CRL-2593).  Both MC3T3E1 and 7F2 cell lines were cultured in -MEM supplemented with 10 

% fetal bovine serum, 2 mM L-Glutamine, 1% sodium pyruvate, and penicillin/streptomycin, at 

370C in 6 % CO2. VP16 (Bristol Myers Squibb, New York, NY) was used at 50-100 uM for both 

MC3T3E1 and 7F2 cells; melphalan (Sigma) was dissolved in diluent containing 2% sodium 

citrate, 60 % Propylene Glycol, and 5.2 % EtOH, pH 1.1 immediately prior to use.  

 

Differentiation of pre-osteoblast cells to mature osteoblasts 

 MC3T3E1 and 7F2 cells were plated in 24 well plates as confluent monolayers. To 

induce osteoblast differentiation medium was supplemented with 100 ug/ml Ascorbic acid and 

10 mM β-glycerol phosphate. Medium was exchanged every 3 days. 7F2 cells were assayed for 

differentiation after 7 days in culture and MC3T3E1 cells after 21 days. Cells were stained for 

alkaline phosphatase according to the manufacturer's protocol (SigmaFast BCIP/NBT kit or 

Leukocyte Alkaline Phosphatase kit, Sigma). Calcium deposition was monitored by Alizarin Red 

S staining as previously described [24]. 

 

Isolation of RNA and RT-PCR 

 RNA was isolated from osteoblasts using the RNeasy Mini kit with on-column DNase I 

digestion (Qiagen). One-step RT-PCR reactions were performed in triplicate using 50 ng of RNA 

per well, with the QuiantiTect SYBR Green RT-PCR kit (Qiagen) on an Applied Biosystems 7500 

Real Time PCR machine. GUS B, GAPDH or B2M were used as loading controls. The following 

primer sets were purchased from Invitrogen: OCN (F: ACCCTGGCTGCGCTCTGTCTCT R: 

GATGCGTTTGTAGGCGGTCTTCA) Runx2 (F: TTTAGGGCGCATTCCTCATC 
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R:TGTCCTTGTGGATTAAAAGGACTTG) SP7 (F: ACTCATCCCTATGGCTCGTG R: 

GGTAGGGAGCTGGGTTAAGG) Col1a1 (F: TGTGTGCGATGACGTGCAAT 

R:GGGTCCCTCGACTCCTACA) PPARG2 (F: TTTATGCTGTTATGGGTGAAACTC 

R:AGAGGTCCACAGAGCTGATTCC) Adipoq (F:TGTTCCTCTTAATCCTGCCCA 

R:CCAACCTGCACAAGTTCCCTT) CEBPA (F: TGGACAAGAACAGCAACGAG  

R:TCACTGGTCAACTCCAGCAC) OPN (F: GTGAAAGTGACTGATTCTGGCA 

R:TTTTCTTCAGAGGACACAGCATT) Primers for CXCL12, TGF-β1, B2M, GUS B, BMP4, and 

GAPDH were purchased from Real Time Primers. Fold change was calculated by the ΔΔCt 

method [25]. 

 

ELISA 

 ELISAs for CXCL12 (R&D) and OPN (R&D) were performed according to the 

manufacturer’s instructions. Cellular supernatants were evaluated, from osteoblasts that were 

either untreated, or treated for 24h with 100 µM VP16 or 25 µg/ml melphalan. For CXCL12 

ELISAs medium was diluted 1:4 for 7F2 cells or used undiluted for MC3T3E1 cells. For OPN 

ELISA supernatants were diluted 1: 200. 

 

Scanning electron microscopy (SEM) 

Adult 20 week old Balb/c mice were treated either with VP16 diluent (65% polyethylene 

glycol 300, 8% Tween 80, 30% ethanol, 0.2% citric acid, and 3% benzyl alcohol) or 20 mg/kg 

VP16 once a day, for 72h. Twenty four hours after the final treatment the mice were sacrificed 

and marrow was dislodged by rinsing femurs with PBS at 37° C to expose the endosteal 

surface. Femurs were subsequently washed in 37° C PBS prior to immersion fixation in 1% 

formaldehyde, 2.5% glutaraldehyde in 0.15 M sodium cacodylate buffer pH 7.2 for 48 hours at 
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4° C. Samples were washed in sodium cacodylate buffer and post-fixed in 1% osmium tetroxide 

in the cacodylate buffer for 30 min. Bones were rapidly dehydrated in graded steps of acetone 

(25%-100%) and critically point dried using a Tousimis 815a Critical Point Dryer. Samples were 

mounted onto aluminum stubs and coated with a 40 nm-thick layer of Platinum using a 

Temescal BJD 200 E-Beam Evaporator.  Samples were examined with a JEOL JSM-7600-F 

scanning electron microscope.  

 

Isolation of murine hematopoietic stem and progenitor cells 

Adult Balb/c mice were sacrificed with bone marrow collected from femurs and tibia. 

Bone marrow cells were labeled with biotinylated antibodies specific for CD5, CD45R, CD11b, 

Gr-1 (Ly6G/C), 7-4 and Ter119 according to the manufacturer's protocol (Lineage cell depletion 

kit, Miltenyi Biotec). Lineage-negative (Lin-) cells were isolated on an AutoMacs column using 

the Deplete S program (purity > 90 %). To assay the effect of drugs on the capacity of 

osteoblasts to support survival and differentiation of HSC and progenitor cells, 40,000 Lin- cells 

were co-cultured with a monolayer of MC3T3E1 osteoblasts (170,000 cells per 24-well) for 5 

days in RPMI containing 10 % FBS and 10 ng/ml IL-3 (murine rIL-3, R&D Systems). MC3T3E1 

were either untreated or pre-treated with 50 µM VP16 or 25 µg/ml melphalan for 24h and 

washed thoroughly before hematopoietic cells were added to the culture. Hematopoietic cells 

were collected at the termination of the experiment by collecting both the supernatant and the 

monolayer to include the hematopoietic cells attached to it. The two fractions of cells were 

combined and labeled with the following ratαmouse antibodies (BD Biosciences): CD45-PE-

Cy7, CD45R (B220)-Alexa Fluor 700, CD16/32-FITC, Sca1-APC, CD117-PerCP-Cy5.5 and 

CD127-PE. The viability of the cells was monitored by staining with Violet Live/Dead fixable 

dead cell stain (Invitrogen). The samples were run on a FACS Aria flow cytometer (BD 

Biosciences) and data were analyzed by FCS Express software (De Novo Software). 
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Osteoblasts were excluded from analysis by gating out live/CD45- cells. 

 

Statistical analysis 

 One-Way ANOVA with Holm-Sidak post hoc multiple comparison was performed using 

SigmaPlot Version 11.0 to detect differences in RT-PCR and ELISA data. Differences were 

considered statistically significant when p-value was < 0.05. 

 

Results 

 To study how osteoblasts at varied differentiation stages react to drug exposure, we 

used two mouse pre-osteoblast cell lines, MC3T3E1 (subclone 4) and 7F2. 7F2 cells were 

clonally derived from p53-/-mice, while MC3T3E1 are spontaneously immortalized mouse 

calvarial osteoblasts [26,27]. Both were reported to differentiate to mature osteoblasts in 

medium containing ascorbic acid and β-glycerol phosphate [26,27]. While both control and 

differentiated cells stained strongly for alkaline phosphatase, consistent with the appearance of 

strong ALP staining in early preosteoblast cells, only differentiated cells exhibited calcium 

deposits (Fig. 1 A, B). We further verified the differentiation to mature osteoblasts by monitoring 

the levels of OCN. Both 7F2 and MC3T3E1 cell lines exhibited induction of OCN mRNA with 

differentiation (Fig. 2). These observations suggest that the 7F2 and MC3T3E1 cells faithfully 

recapitulate osteoblast differentiation and are an appropriate model for pre-osteoblast 

development.  

To determine the effect of VP16 and melphalan on the ability of osteoblasts to support 

hematopoietic cells, we evaluated the changes in osteoblast-specific transcripts and several 

factors important for hematopoietic support.  Based on the rationale of the question, clinically 

relevant drugs and sub-lethal concentrations were chosen for evaluation to allow investigation of 
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functional alterations of the microenvironment. Importantly, no significant reduction in osteoblast 

viability was observed, evaluated by PrestoBlue, MTT assay, and Trypan blue, in cultures 

treated at the concentrations of drugs utilized in this study (data not shown).  In MC3T3E1 cells 

we detected an approximate 5 fold increase in the transcript levels of OCN, both in 

undifferentiated and differentiated cells after VP16 treatment, while melphalan treatment 

increased OCN levels by 3 fold in undifferentiated cells and 1.5 fold in differentiated cells, 

respectively (Fig. 2A). OPN levels, which decrease with differentiation, were also elevated after 

VP16 and melphalan treatment in both control and differentiated MC3T3E1 cells. In contrast, 

the levels of Runx2, SP7 and Col1a1 decreased in both undifferentiated and differentiated 

MC3T3E1 cells with treatment. RunX2, SP7, and Col1a1 were affected similarly in 7F2 cells 

(Fig. 2B). For 7F2 cells, OCN levels were affected differently by VP16 and melphalan. While 

VP16 induced an increase in OCN transcript levels similar to MC3T3E1 cells, melphalan 

treatment resulted in decreased OCN levels. 

We also evaluated the effect of VP16 and melphalan on the mRNA levels of CXCL12 

and BMP4 (Fig. 2 and data not shown). The level BMP4 transcript was not affected by either 

differentiation or treatment with VP16 or melphalan in both 7F2 and MC3T3E1 cells (data not 

shown). VP16 treatment resulted in an approximate 2 fold increase in CXCL12, while melphalan 

decreased CXCL12 transcript levels, by 7.7 fold and 5.6 fold in undifferentiated and 

differentiated MC3T3E1 cells, respectively (Fig. 2A). 7F2 cells exhibited a decrease in CXCL12 

after treatment with either VP16 or melphalan (Fig. 2B).  

To investigate the changes in CXCL12 and OPN at a protein level, ELISA of culture 

supernatants was performed (Fig. 3). CXCL12 and OPN protein response following treatment 

differed from the transcriptional responses shown in Fig. 2. Secreted CXCL12 levels were 

significantly lower than untreated controls in undifferentiated and differentiated cells for both 

MC3T3E1 and 7F2 (Fig. 3 A and B). OPN was affected similarly in MC3T3E1 and 7F2 as well, 
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showing a decrease in undifferentiated cells treated with melphalan and also differentiated 

compared to undifferentiated controls (Fig. 3C and data not shown).  Since sublethal doses of 

chemotherapy altered the composition of extracellular matrix proteins and delayed osteoblast 

maturation we sought to determine what effect these agents had on the ultrastructure of the 

endosteum. To observe gross morphology of the endosteum following treatment with VP16 in 

vivo we performed SEM on diluent controls (Fig. 4, A and B) and VP16 treated (Fig. 4, C and D) 

long bones. The endosteal surface is composed of cord/rope like structures covered by a 

smooth surface coat (arrows) in diluent controls.  Lacunae vary in size and number but were 

found to be present over the entire endosteal surface (Fig. 4A). In addition, smooth electron 

dense patches (*, Fig. 4A) were also identified on the endosteal surface (Fig. 4B). Overall, the 

endosteal surface was intact and exhibited a uniform surface coat.  VP16 treatment caused 

disruption of the endosteal surface lining (Fig. 4C). Material composing the electron dense 

patches condensed into clumps (*, Fig. 4C) exposing the underlying matrix. The surface coat 

covering the cord/rope structures was gone (Fig. 4D) exposing collagen fibers (arrows, inset, 

Fig. 4D). The appearance of the endosteum following treatment with VP16 provides only a 

general visual representation of the damage caused by VP16 in the osteoblastic niche but 

further characterization is required to come to specific conclusions beyond that. 

  We next determined whether treatment of 7F2 preosteoblasts with VP16 or melphalan 

would affect their ability to differentiate to mature osteoblasts, utilizing ALP as an indicator. 

Overall staining for ALP was reduced by drug treatment in cells cultured in both control and 

differentiation medium (Fig. 5B).  At the same time, microscopic examination of the cultures 

revealed a population of cells staining intensely for ALP (Fig. 5A), which would correspond to 

cells at an earlier stage of osteoblast differentiation. We further determined the OCN, Runx2, 

SP7, Col1a1 and CXCL12 transcript levels of cells which were treated with drugs and then 

allowed to differentiate for 7 days (Fig. 5C). CXCL12 mRNA abundance did not change with 
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differentiation or after drug treatment, but OCN mRNA decreased approximately 20 fold after 

VP16 exposure and 10 fold after melphalan exposure. Similarly, a statistically significant 

decrease in transcript levels was detected for RUNX2, SP7 and Col1a1. These data are 

consistent with delayed osteoblast maturation after exposure to VP16 and melphalan. 

MC3T3E1 cells had similar results (data not shown). 

 Both 7F2 cells and MC3T3E1 cells treated with VP16 or melphalan exhibited vacuoles in 

the cells, reminiscent of lipid droplets. Based on reports of adipocyte differentiation after 

chemotherapy treatment of osteoblasts [28] we stained the cultures for the presence of lipids 

with Oil Red and confirmed that the observed vacuoles indeed contained lipids (Fig. 5D, top and 

data not shown). However, there was no upregulation of adipocyte-specific transcripts and 

instead PPARG2, CEBPA, and Adipoq decreased significantly after drug treatment of 7F2 cells, 

both in control and differentiation medium (Fig. 5E, bottom). Thus, it is unlikely that drug-treated 

cells, in this model, undergo adipocyte differentiation.                     

 We next determined the effect of VP16 and melphalan on the ability of MC3T3E1 cells to 

support HSC utilizing Lineage-negative cells co-cultured with a monolayer of MC3T3E1 cells 

(untreated or treated with VP16 or melphalan as described in materials and methods). To follow 

HSC support in vivo, we observed Lin-Sca1+c-kit+ cells (LSK), a cellular subset which would 

mark about 25 % of the hematopoietic stem/progenitor cells (HSPC) in Balb/c mice [29].  In the 

Lin- fraction of cells we determined the relative percentage of HSPCs, myeloid progenitors 

(Sca1-c-kit+IL7R-), lymphoid progenitors (Sca1+c-kit+IL7R+), as well as mature myeloid cells 

(CD16/CD32+) at the day of plating and after 5 days in culture with chemotherapy pre-treated or 

matched untreated control MC3T3E1 cells. After 5 days in culture about 80% of  the Lin- cells 

incubated in media alone were viable, while Lin- cells in co-culture with untreated “healthy” 

osteoblasts were approximately 94% viable (Fig. 6A). Osteoblasts pre-treated with either VP16 

or melphalan also supported the Lin- cell survival to a degree higher than media alone. 
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Hematopoietic cell death in co-cultures of chemotherapy pre-treated osteoblasts was noted to 

be slightly higher than in cultures with control osteoblasts, at approximately 8.5% and 12.0%, 

respectively, compared to 6% for untreated osteoblasts. Osteoblasts generally supported 

differentiation of Lin- cells to CD16/CD32+ mature myeloid cells (Fig. 6B). Melphalan-treated 

osteoblasts supported marginally less myeloid cell differentiation compared to untreated cells 

(88.8% vs. 95.3%), while VP16 had no effect on MC3T3E1 ability to support myeloid 

differentiation.  

Because the Lin- compartment contains not only stem cells but also committed 

hematopoietic progenitors, we further evaluated the percentage of LSK cells which are IL7R+ 

(lymphoid progenitors) and the Lin-Sca1-c-kit+IL7R- as myeloid progenitors in contrast to 

mature CD16/CD32+ myeloid cells noted earlier [30]. We detected a higher percentage of both 

lymphoid and myeloid progenitors co-cultured with VP16 or melphalan pre-treated osteoblasts 

compared to untreated osteoblast layers after 5 days in culture (Fig. 6 B and D). Our results 

indicate that VP16 and melphalan modulate the capacity of osteoblasts to support 

hematopoiesis and alter the ratio of stem and progenitor cells in this in vitro model, although the 

quantitative differences were modest. 

 

Discussion 

 The current study focused on the effects of VP16 and melphalan on osteoblast cells at 

different stages of maturation. Cell lines utilized have been confirmed to be able to differentiate 

to mature osteoblasts by calcium deposition detected by Alizarin Red staining and upregulation 

of osteocalcin (Fig. 1). Both preosteoblast cells and mature osteoblasts expressed ALP which is 

consistent with its onset of detection in early preosteoblast cells [31]. We also detected similar 

amounts of osteoblast-specific transcription factors Runx2 and SP7 in preosteoblasts and 
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mature osteoblasts, consistent with the MC3T3E1 and 7F2 cells being downstream of the MSC 

stage [14]. Collectively these observations suggested a reasonable in vitro model in which to 

evaluate whether chemotherapy vulnerability varies with stage of differentiation. 

VP16 and melphalan altered the expression of several osteoblast-specific transcripts 

(Fig. 2). The Runx2 and SP7 transcription factors, and Col1a1 were uniformly downregulated in 

both MC3T3E1 and 7F2 cells regardless of differentiation stage following treatment.  On the 

other hand, OCN is differentially regulated in 7F2 and MC3T3E1 cells; treatment with drugs 

increases OCN levels in MC3T3E1 cells, while melphalan decreases OCN levels in 7F2 cells. 

This might result from different basal OCN levels in 7F2 and MC3T3E1 cells, since the lack of 

p53 in 7F2 cells contributes to faster growth and osteoblast differentiation in this cell line.  Since 

Col1a1 is a major component of the ECM, and OCN and OPN are immobilized on the ECM, 

these chemotherapy drugs have the potential of altering the adhesion properties of the ECM of 

both pre- and mature osteoblasts. Consistent with this, we detected disruption of the integrity of 

the “architecture” of the endosteal region of femurs from VP16-treated mice by SEM (Fig. 4).  

 More specific analyses will be required to characterize the exact anatomical alterations, 

and the scope of specific cellular elements that are impacted on, but the observation is 

consistent with a general vulnerability of this anatomical site to chemotherapy induced stress.  

Melphalan exposure yielded similar results (data not shown). 

We have also observed that VP16 and melphalan impair factors (including CXCL12 and 

OPN) which are important for hematopoietic cell differentiation (Figs. 2 and 3). We observed 

that although VP16 treatment of MC3T3E1 cells increased CXCL12 transcripts, secreted protein 

was decreased in both 7F2 and MC3T3E1 with treatment of either drug relative to untreated 

controls (Fig. 2 and 3). The differences in CXCL12 transcriptional regulation between 7F2 and 

MC3T3E1 might be linked to the fact that the cell lines have different basal expressions of 

CXCL12, produced at much higher levels in 7F2 cells. Again, this could be explained by the fact 



www.manaraa.com

 45 

that 7F2 cells lack p53, which has been reported to downregulate secreted CXCL12 in fibroblast 

cells [32]. Our results are also consistent with a previous report that in human osteoblasts 

CXCL12 levels are sustainably reduced following treatment with VP16 and melphalan, resulting 

in diminished adhesion of CXCR4+ hematopoietic cells [21]. An additional report has linked the 

absence of CXCL12 with HSC quiescence, but also with increased myeloid differentiation [7]. 

Since in this model CXCL12 was reduced by ablation of CXCL12 abundant reticular cells, which 

also secrete other cytokines and factors important for HSC [7], we feel that the distinct 

observations related to the role of CXCL12 in hematopoietic cell support  could be explained by 

differences in the experimental settings and interplay between several factors.  

We further evaluated the levels of OPN protein and detected a decrease after melphalan 

treatment in undifferentiated MC3T3E1 cells (Fig. 3). It has been shown that OPN inhibits HSC 

proliferation and reduces differentiation of HSCs to myeloid cells in vitro [33]. We have also 

detected altered Lin- support and hematopoietic cell differentiation of chemotherapy pre-treated 

MC3T3E1 cells (Fig. 6), consistent with the above observation. Deregulation of OPN in our 

model provides a potential mechanism by which hematopoiesis can be altered by 

chemotherapeutics.   

 Finally, we determined that VP16 and melphalan also disrupt the ability of preosteoblast 

cells to differentiate to mature osteoblasts. Drug treatment induced delayed osteoblast 

maturation, as evidenced by a significant decrease in a number of transcripts required for 

establishment of the mature osteoblast, including OCN, Runx2, SP7, and Col1a1. We also 

detected the appearance of a population of cells staining intensely for ALP, consistent with ALP 

being expressed at the highest level in preosteoblast cells (Fig. 5). ALP increases, and Col1a1 

decreases, have been noted before in primary human osteoblasts from patients undergoing 

chemotherapy with various drugs [23], and a preferential drug effect on viability of preosteoblast 

cell lines compared to cultures containing mature osteoblasts was also reported [19]. 
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Additionally, VP16 and melphalan treated osteoblasts exhibited increased lipid content but no 

coincident upregulation of adipocyte-specific markers (Fig. 5D and E). Increased lipid staining 

after in vivo treatment with 5-fluorouracil has been interpreted before to indicate preferential 

adipocyte differentiation of murine CXCL12-expressing cells [6], but we did not see a correlation 

between the lipid increase and appearance of adipocyte-specific differentiation markers. Thus, 

the increased lipid content of the chemotherapy treated osteoblasts could be explained by an 

alternative mechanism, with one possibility being autophagosome formation. Results from the 

current study contribute to better understanding the scope of effects of genotoxic stress and 

DNA damage on the bone marrow microenvironment. DNA double strand breaks have been 

shown to promote cell differentiation in normal B-cell development [34], in neuronal stem and 

progenitor cells [35], and in melanocyte stem cells [36]. Conversely, DNA damage impairs 

proper differentiation of myoblasts when applied before induction of differentiation [37]. Our data 

in a model of pre- and mature osteoblasts are consistent with the assertion that DNA damage 

can influence differentiation in a component of the marrow microenvironment. This damage is 

also associated with alteration of ECM gene expression profiles, disrupted structural integrity, 

and dysregulated support of HSC differentiation. A better understanding of the diversity of 

vulnerability of populations of cells in the marrow to drugs with distinct mechanisms of action 

may support improved approaches to pre-transplant conditioning and subsequent restoration of 

steady state hematopoiesis. 
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Figure Legends 

 

Figure 1. Differentiation of MC3T3E1 and 7F2 cells to mature osteoblasts. 

7F2 (A) or MC3T3E1 (B) cells were incubated either with regular growth medium 

(undifferentiated) or osteoblast differentiation medium (differentiated) for 7 days (7F2 cells) or 21 

days (MC3T3E1 cells), respectively. Cells were stained for Alkaline phosphatase (ALP) and 

Alizarin Red as a measure of osteoblast differentiation.  

 

Figure 2. Effect of VP16 and melphalan on the expression of osteoblast-specific transcripts. 

MC3T3E1 cells were incubated either in regular growth medium (undifferentiated) or osteoblast 

differentiation medium (differentiated) for 21 days, after which the cells were treated with 100 

µM VP16 or 25 µg/ml melphalan (A). Total RNA was isolated and qPCR was performed with 

primers specific for OCN, Runx2, SP7, Col1a1, OPN and CXCL12. Relative expression was 

normalized to the expression in undifferentiated untreated cells (undifferentiated untr). (B) 7F2 

cells were differentiated for 7 days and treated with 100 µM VP16 or 25 µg/ml melphalan (B) 

and then processed as described for (A). Error bars denote standard deviation from triplicate 

measurements in a representative experiment. * indicates significantly greater or lesser than 

untreated control (for drug treatments) or undifferentiated untreated control, p-value < 0.05, 

One-Way ANOVA.  

 

Figure 3. Effect of VP16 and melphalan on the levels of secreted CXCL12 and OPN. MC3T3E1 

cells were incubated either in regular growth medium (undifferentiated) or osteoblast 

differentiation medium (differentiated) for 21 days, after which medium was removed and 

replaced with fresh medium (untreated) or medium containing 100 µM VP16 or 25 µg/ml 
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melphalan. After 24 hours, medium was removed and ELISAs were performed for CXCL12 (A) 

and OPN (C). 7F2 cells were differentiated for 7 days then treated as in A prior to ELISA for 

CXCL12 (B). * indicates significantly greater or lesser than untreated control (for drug 

treatments) or undifferentiated untreated control, p-value < 0.05, One-Way ANOVA, n=3. 

 

Figure 4. Scanning electron microscopy of murine bone. Representative scanning electron 

micrographs of mouse control and VP16-treated long bones. In diluent-treated controls (A, B) 

the endosteum consists of an intact uniform surface coat covering the underlying ECM. (B). 

Enlarged view of smooth electron dense patches (*, Fig. 3A) found dispersed throughout the 

endosteum. VP16 treatment (C, D) caused disruption of the endosteal surface coat (*) exposing 

the underlying extracellular fibrillar matrix (arrows inset). Bar, 10 uM. 

 

Figure 5. Effect of VP16 and melphalan on the differentiation potential of preosteoblast cells. 

7F2 cells were exposed for 24 h to 50 µM VP16, 25 µg/ml melphalan, VP16 diluent (VP16 dil) or 

melphalan diluent (Mel dil), respectively. Following treatment cells were washed and incubated 

with regular growth medium (undifferentiated) or osteoblast differentiation medium 

(differentiated) for 7 days. Cells were stained for Alkaline phosphatase (ALP) and images were 

taken with (A) or without (B) 20x magnification. (C). Total RNA was isolated from cells treated as 

in A and qPCR was performed with primers specific for OCN, Runx2, SP7, Col1a1 and CXCL12. 

Relative expression of the genes was normalized to the expression in untreated undifferentiated 

cells. (D). Oil Red staining for lipids in cells treated as in (A). Real time PCR for the adipocyte-

specific transcripts PPARG2, CEBPA, and Adipoq (E). Error bars denote standard deviation 

from triplicate measurements. * indicates significantly greater or lesser than untreated control 

(for drug treatments) or undifferentiated untreated control, p-value < 0.05, One-Way ANOVA. 
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Figure 6. Support of murine hematopoietic stem and progenitor cells by osteoblasts treated with 

VP16 or melphalan. MC3T3E1 cells were seeded as monolayers in 24-well plates. Cells were 

treated with 50 µM VP16, 25 µg/ml melphalan, or were left untreated for 24h. After several 

washes of the osteoblasts, 40,000 freshly isolated lineage negative cells were added to the 

osteoblasts in RPMI medium containing 10 % FBS and 10 ng/ml IL-3. Cultures were incubated 

for 5 days, after which cells were trypsinized and stained with Violet Live/Dead fixable dead cell 

stain and antibodies to CD45, Sca-1, c-kit, CD16/32, B220 and CD127. Number of dead cells 

(A), Sca+c-kit+ (LSK) and lymphoid progenitors (CLP) (C), myeloid progenitors (D) and 

CD16/CD32+ myeloid cells (B) was determined by flow cytometry. 
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Figure 1. Differentiation of MC3T3E1 and 7F2 cells to mature osteoblasts. 

Gencheva and Hare et al. 2013. Bone marrow osteoblast vulnerability to chemotherapy. 
European Journal of Haematology. Permission Number: 3835731013613. 
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Figure 2. Effect of VP16 and melphalan on the expression of osteoblast-specific 
transcripts. 

Gencheva and Hare et al. 2013. Bone marrow osteoblast vulnerability to chemotherapy. 
European Journal of Haematology. Permission Number: 3835731013613. 
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Figure 3. Effect of VP16 and melphalan on the levels of secreted CXCL12 and OPN. 

Gencheva and Hare et al. 2013. Bone marrow osteoblast vulnerability to chemotherapy. 
European Journal of Haematology. Permission Number: 3835731013613. 
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Figure 4. Scanning electron microscopy of murine bone. 

Gencheva and Hare et al. 2013. Bone marrow osteoblast vulnerability to chemotherapy. 
European Journal of Haematology. Permission Number: 3835731013613. 

  



www.manaraa.com

 57 

 

Figure 5. Effect of VP16 and melphalan on the differentiation potential of preosteoblast 
cells. 

Gencheva and Hare et al. 2013. Bone marrow osteoblast vulnerability to chemotherapy. 
European Journal of Haematology. Permission Number: 3835731013613. 
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Figure 6. Support of murine hematopoietic stem and progenitor cells by osteoblasts 

treated with VP16 or melphalan. 

 

Gencheva and Hare et al. 2013. Bone marrow osteoblast vulnerability to chemotherapy. 
European Journal of Haematology. Permission Number: 3835731013613. 
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Abstract 

Mesenchymal stem cells (MSCs) are of interest for use in diverse cellular therapies. Ex 

vivo expansion of MSCs intended for transplantation must result in generation of cells that 

maintain fidelity of critical functions.  Previous investigations have identified genetic and 

phenotypic alterations of MSCs with in vitro passage but little is known regarding how culturing 

influences the ability of MSCs to repair double strand DNA breaks (DSBs), the most severe of 

DNA lesions. To investigate the response to DSB stress with passage in vitro, primary human 

MSCs were exposed to etoposide (VP16) at various passages with subsequent evaluation of 

cellular damage responses and DNA repair. Passage number did not affect susceptibility to 

VP16 or the incidence and repair kinetics of DSBs. Non-homologous end joining (NHEJ) 

transcripts showed little alteration with VP16 exposure or passage, however, homologous 

recombination (HR) transcripts were reduced following VP16 exposure with this decrease 

amplified as MSCs were passaged in vitro. Functional evaluations of NHEJ and HR showed that 

MSCs were unable to activate NHEJ repair following VP16 stress in cells after successive 

passage. These results indicate that ex vivo expansion of MSCs alters their ability to perform 

DSB repair, a necessary function for cells intended for transplantation. 
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Introduction 

MSCs are a mesoderm derived stromal population defined functionally by their ability to 

differentiate into various cell types in vitro. Osteoblasts, adipocytes, and chondrocytes have 

been shown to arise from MSC precursors under various culture conditions [1]. MSCs have also 

been shown to have immunomodulatory properties, displaying the ability to suppress adaptive 

and innate immune responses through the secretion of anti-inflammatory cytokines [2]. In 

addition to these functional characteristics MSCs are able to persist in culture, making it 

possible to alter gene expression of the cells through various transfection techniques. Such an 

approach has been utilized in a rat model of myocardial infarction to deliver HIF-1α expressing 

MSCs to damaged heart tissue [3]. These cellular attributes have made MSCs an attractive 

candidate for the development of stem cell therapies in humans. MSCs can be acquired from 

various tissues of the body including the bone marrow [4]. The injection of bone marrow derived 

MSCs is currently undergoing Phase III clinical trials in the United States for the treatment of 

Crohn’s disease and myocardial infarction (clinicaltrial.gov identifiers NCT00482092 and 

NCT01394432, respectively). In addition, several pre-clinical applications have been described 

in animal models of disease, such as autoimmune encephalitis, graft vs. host disease, 

rheumatoid arthritis, type I diabetes, and inflammatory bowel disease [5]. 

The use of MSCs for cellular therapies requires the ability of ex vivo expansion 

generating adequate numbers of cells for treatment. Although there is significant evidence 

documenting the clinical utility of MSCs, they are a heterogeneous population of cells that differ 

based on the means by which they are acquired and how they are cultured in vitro [6]. Given 

their utility, it is important to understand how they are altered during the necessary ex vivo 

expansion prior to patient administration. It has been shown previously that ex vivo expansion of 

MSCs results in alterations in genome stability [7, 8], epigenetics [9, 10], and functional abilities 

to differentiate into osteogenic cells [11, 12]. However, these studies have been performed in 



www.manaraa.com

 62 

non-stressed conditions, and little has been shown regarding how the activity of MSCs may be 

altered once administered to a patient where they may encounter cellular stresses, such as 

DNA damage. Eukaryotes have evolved means to recover from many types of DNA damage, 

the most lethal of which are double strand breaks (DSBs). DSBs are repaired by two major 

repair pathways, non-homologous end joining (NHEJ) and homologous recombination (HR) 

[13]. NHEJ involves the resection of nucleotides from both sides of a DSB, followed by the 

binding of Ku70 and Ku80 proteins with DNA-PKcs, which recruits DNA ligase IV and initiates 

ligation of the break [14]. NHEJ is capable of repairing incompatible ends regardless of cell 

cycle status. When a sister chromatid is present (during S/G2/M phases of cell cycle), HR is 

capable of repairing a break by resecting both ends of a break, followed by insertion of the 3’ 

resected end into the homologous sequence thereby using it as a template for repair. Due to the 

presence of a homologous sequence, HR is less error prone than NHEJ, however, the necessity 

of a reference template limits the utilization of HR to S/G2/M phases of cell cycle [15]. 

To determine how ex vivo expansion alters the response of MSCs to stress, we utilized 

etoposide (VP16), a DNA type-II topoisomerase inhibitor that specifically induces DSBs 

following DNA replication [16]. DSBs are the most lethal of DNA lesions, resulting in a larger 

degree of somatic mutation or apoptosis than other DNA lesions [17]. To determine how ex vivo 

expansion alters the response of MSCs to DSB stress, we passaged bone marrow derived 

MSCs in vitro, evaluating their responses to cellular stress and DSB repair following VP16 

exposure. 

 

Materials and Methods 

 

Human MSC Isolation and Cell Culture 
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Bone marrow aspirates were de-identified samples from patients treated at the West 

Virginia University Healthcare System. Cells were cultured in α-MEM supplemented with 10% 

fetal bovine serum (BSA), 2mM L-glutamine, 100U/mL penicillin, 100µg/mL streptomycin, and 

housed at 37°C, 6% CO2. MSCs were derived from donors who had no previous exposure to 

chemotherapy or irradiation, and no history of malignancy.  

Surface Staining of MSCs 

Cells were trypsinized and washed in 1x phosphate buffered saline (PBS). Primary 

antibodies (1ug) specific for human CD45, CD44, CD105, and CD166 (BD Pharmingen, San 

Jose, California, United States) were added and incubated on ice for 20 minutes in PBS/3% 

BSA. Cells were washed in PBS/3% BSA, then incubated with 1ug donkey anti-mouse-AF488 

(BD Pharmingen, San Jose, California, United States) for 20 minutes on ice. Cells were then 

washed in PBS/3% BSA, resuspended in 400uL PBS, and immediately analyzed using a FACS 

Fortessa (BD Biosciences, Franklin Lakes, New Jersey, United States). 

Differentiation of MSCs 

To induce osteogenic differentiation in human MSC cultures, cells were plated at 90% 

confluence then cultured in Stempro® Osteogenesis Differentiation Kit Medium (Life 

Technologies, Carlsbad, California, United States) for 21 days. Differentiation medium was 

changed every 3 days. To induce adipogenic differentiation, cells were treated similarly only 

cultured in Stempro® Adipogenesis Differentiation Kit Medium (Life Technologies, Carlsbad, 

California, United States) for 10 days. Differentiated cells were compared to undifferentiated 

controls, cultured in normal MSC medium (see “Human MSC Isolation and Cell Culture”). 

Alizarin Red and Oil Red Staining 
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Human MSCs were fixed in 4% paraformaldehyde (Sigma, St. Louis, Missouri, United 

States) for 4 hours prior to staining. Alizarin red and oil red staining were performed as 

described previously [18, 19]. Cells were washed in deionized water and imaged immediately at 

100x magnification using a Leica DMIL LED Inverted Microscope and Leica DFC 295 Digital 

Microscope Color Camera (Leica Microsystems, Wetzlar, Germany). 

Presto Blue Viability Assay 

Human MSCs were plated at 90% confluence in 96-well plates, each plate containing 

unexposed and VP16 exposed cells, 5 wells per group. Cells were exposed to 25µM VP16 or 

medium only control for 24 hours. After incubation, cells were washed 3 times and allowed 0, 6, 

or 48 hours to recover. At each time point, viability was assessed using Presto Blue® Cell 

Viability Reagent (Life Technologies, Carlsbad, California, United States) as per manufacturer’s 

recommendation. Well ODs were blanked to wells containing medium and Presto Blue® Cell 

Viability Reagent alone prior to analysis. 

Etoposide Exposure 

VP16 (Bristol-Myers Squibb, New York, New York, United States) was stored in 

33.98mM aliquots at -20°C and diluted to 25µM immediately prior to use in MSC medium (see 

“Human MSC Isolation and Cell Culture”). 

Fluorescent Microscopy 

Cells were plated at 90% confluence on glass coverslips in 24-well plates, then exposed 

to 25µM VP16 or medium alone for 24 hours. Following incubation, cells were washed three 

times, then allowed 0, 6, or 48 hours to recover. At each recovery time, coverslips were washed 

with 1x PBS, then fixed for 6 hours in 4% paraformaldehyde. Following fixing, cells were 

permeabilized with 0.5% Triton X-100 then treated with Image-iT™ FX Signal Enhancer (Life 
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Technologies, Carlsbad, California, United States) for 20 minutes. Following a 20 minute block 

with 5% BSA, cells were incubated with Ƴ-H2AX antibody (1:400 Dilution, Millipore, Billerica, 

Massachusetts, United States) overnight at 4°C. Following incubation, the cells were washed in 

1x PBS then incubated for 1 hour in Goat anti-Rabbit-FITC secondary antibody (1:200, Cell 

Signaling, Danvers, Massachusetts, United States) prior to mounting on coverslips with ProLong 

Gold Antifade Reagent with DAPI (Life Technologies, Carlsbad, California, United States). 

Antibodies were diluted in 5% BSA. Following staining, cells were imaged on a Zeiss LSM 510 

Laser Scanning Confocal Microscope (Zeiss, Jena, Germany). Ƴ-H2AX was quantitated as cells 

expressing 10 or more foci, or manually counted at the 6 hour recovery time point to determine 

Ƴ-H2AX on a per cell basis. The 6 hour recovery time point was utilized for counting because 

foci were too abundant at 0 hours recovery to discern individual foci. 

RNA Isolation and qPCR 

RNA was isolated using Qiagen RNeasy Minikit (Qiagen, Valencia, California, United 

States) and stored at -80°C prior to qPCR. RNA stock solutions were diluted to 50ng/11µL 

concentration prior to qPCR analysis. One step qPCR reactions were performed using 

QuantiTect SYBR Green RT-PCR Kit (Qiagen, Valencia, California, United States) and a 7500 

Applied Biosystems Thermalcycler (Applied Biosystems, Foster City, California, United States). 

Primers sequences are indicated in Supplementary Table 1. PCR data were analyzed using the 

ΔΔCt Method [20]. 

Cell Cycle Analysis 

Following trypsinization, cells were fixed in 70% ethanol for 24 hours prior to cell cycle 

analysis. Once fixed, cells were washed in 1x PBS, then stained with propidium iodide staining 

solution (0.1% Triton X-100, 0.2mg/mL RNaseA, 0.02mg/mL propidium iodide) for 30 minutes at 

room temperature. Cells were then resuspended in 1x PBS and ran on a Beckman FACS 
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Calibur (BD Biosciences, Franklin Lakes, New Jersey, United States). Analysis of cell cycle data 

was performed using FCS Express 4 Software (De Novo Software, Glendale, California, United 

States). 

Western Blot Analysis 

Protein was isolated from whole cell lysates prior to Western analysis using reducing 

conditions. Blots were probed using Rad51 (Cell Signaling, Danvers, Massachusetts, United 

States) and XRCC3 (Novus Biologicals, Littleton, Colorado, United States) antibodies, and anti-

rabbit-HRP (Cell Signaling, Danvers, Massachusetts, United States). Immobilon Western ECL 

reagents (EMD Millipore, Billerica, Massachusetts, United States) were used to develop 

membranes. 

NHEJ and HR Reporter Assays 

Functional contributions of NHEJ and HR to DSB repair was evaluated using reporter 

assays developed and kindly provided by Dr. Vera Gorbunova (University of Rochester, 

Rochester, NY). NHEJ and HR constructs are designed with a Pem1 adenoviral intron 

interrupting the reading frame of GFP. The Pem1 intron is flanked by I-SceI restriction sites that 

when repaired by NHEJ or HR restores the reading frame of GFP, resulting in expression which 

can be quantitated by flow cytometry along with a DsRed loading control to evaluate 

transfection efficiency. The total %GFP+/%DsRed+ gives the repair efficiency, a number that 

quantitatively reflects the degree to which MSCs have utilized NHEJ or HR to repair the reporter 

plasmid [21]. Cells were exposed to 25µM VP16 for 24 hours prior to isolation of cells for 

analysis as previously described [22]. Cells were nucleofected using an Amaxa Nucleofector 

(Lonza, Basel, Switzerland), program U-23. Cells were nucleofected with 2µg HR or 0.5µg 

NHEJ constructs and 0.5µg DsRed loading control. Prior to nucleofection NHEJ and HR 

constructs were linearized with I-SceI (New England Biolabs, Ipswich, Massachusetts, United 
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States) as previously described [22]. 10µg of EGFP-N1 or DsRed-Express-DR (Clontech, 

Mountain View, California, United States) plasmids were included as positive controls. Following 

nucleofection, cells were cultured for 72 hours then evaluated for GFP and DsRed expression 

using a FACS Fortessa flow cytometer. 

Statistical Analysis 

For Presto Blue® viability analysis, two-way Student’s T-tests were performed 

comparing untreated to treated cells at each recovery time. Ƴ-H2AX quantitation and NHEJ/HR 

reporter assay data were evaluated by One-Way ANOVA with Holm-Sidak Post Hoc. Ƴ-H2AX 

data in Supplementary Figure 2 were evaluated using the Kruskal-Wallis test. Statistical 

significance was defined as p-value ≤ 0.05 using SigmaPlot Version 11 (Systat Software Inc., 

San Jose, California, United States). Experiments have been repeated at least twice using cell 

lines derived from different patients, and three times for surface marker phenotyping, Presto 

Blue®, cell cycle analysis, Ƴ-H2AX microscopy, and NHEJ/HR qPCR experiments. Error bars in 

Figures indicate standard error. 

 

Results 

MSC Characteristics with Passage ex vivo 

Consistent with an MSC phenotype [23, 24], bone marrow derived MSCs showed an 

ability to perform both osteogenic and adipogenic differentiation, (Figure 1A and B) and were 

CD45-CD44+CD105+CD166+ (Figure 1C). The adipogenic differentiation potential of MSCs 

appeared consistent up to passage 12 (Figure 1B). Previously, MSCs have been shown to 

display reduced osteogenic differentiation potential following prolonged passage in vitro [11, 12]. 

In addition, extensive culturing of MSCs has been shown to reduce the proportion of cells in S-
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phase [25]. Consistent with these observations, we found that the osteogenic differentiation 

potential of passage 12 MSCs was reduced relative to less passaged cells (Figure 1A). The cell 

cycle distribution of MSCs was similar in Passage 6 to Passage 10 cells, however, the 

proportion of cells in S-phase was reduced at Passage 12 (Figure 3A, Untreated).  These 

results indicate that our cells were characteristic of MSCs, and displayed a functional phenotype 

consistent with extended passage ex vivo by passage 12. 

In addition to differentiating into various mesenchymal lineages, MSCs functionally 

contribute to the regulation of the differentiation and proliferation of hematopoietic cells [26]. 

MSCs also provide chemotactic gradients that enable hematopoietic cell homing to the bone 

marrow [27], a process that we have previously shown to be negatively affected by 

chemotherapy exposure of bone marrow stromal cells and osteoblasts [28, 29]. A preliminary 

set of experiments did not provide evidence for passage related alterations of the ability of VP16 

exposed MSCs to regulate the proliferation or chemotaxis of a stromal cell dependent murine 

pro-B cell clone, or the differentiation of normal human CD34+ hematopoietic progenitor cells 

(data not shown). 

Sub-Lethal Concentrations of VP16 Induce Cell Cycle Arrest in MSCs Regardless of 

Passage 

To determine how MSCs respond to stress with successive passage in vitro, cells were 

exposed to VP16 for 24 hours at 90% confluence, then washed three times in complete medium 

and allowed 0, 6, or 48 hours to recover prior to analyses. Cells were exposed to VP16 at 90% 

confluence due to the cell cycle specific nature of both VP16 and HR mediated repair of DSBs. 

VP16 specifically induces DSBs during mitotic events [16], therefore sub-confluent cells were 

used in our model. 25µM VP16 was utilized because it was the highest concentration of VP16 

that did not result in overt cell death up to 48 hours recovery time (Figure 2 and data not shown) 
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and therefore represented sub-lethal stress in our model. Exposure of MSCs to VP16 resulted in 

occasional statistically significant drops in viability, however no passage related trends were 

present. Consistent with the absence of passage related trends in the viability of MSCs following 

VP16 exposure, the abundance of pro-apoptotic (PUMA and NOXA) and anti-apoptotic (BCL-XL 

and BCL-2) transcripts were similar with passage following VP16 stress (Figure S1). These 

results suggest that MSCs do not display alterations in susceptibility to VP16 up to passage 12 

in vitro. 

Exposure of MSCs to sub-lethal concentrations of VP16 resulted in a transcriptional 

induction of p21 which was similar among all passages (Figure 3B). p21 was elevated 

approximately 4 to 6 fold after 24 hours exposure to VP16 and remained elevated following 48 

hours recovery. Consistent with increased p21, VP16 exposure resulted in a reduction in the 

proportion of cells in S/G2/M phase of cell cycle (Figure 3A). The transcriptional abundance of 

p16 and p53 were gradually decreased following exposure to VP16 (Figure 3B), suggesting that 

the observed G1 arrest was due to the earlier and relatively more robust induction of p21 

following VP16 exposure. These results suggest that VP16 induces cell cycle arrest at all 

passages in ex vivo expanded MSCs. 

Ex vivo Passage of MSCs Does Not Alter Incidence or Repair Kinetics of DSBs Following 

VP16 Exposure 

To visualize DSBs in MSCs following VP16 exposure immunofluorescent staining of ϒ-

H2AX was utilized, as described previously [30]. MSCs displayed a large number of DSBs 

following 24 hours exposure to VP16 (Figure 4A). After 48 hours recovery time, the abundance 

of DSBs decreased, resulting in less than 20% of cells displaying 10 or more ϒ-H2AX foci 

(Figure 4A and B). The proportion of cells with 10 or more ϒ-H2AX foci did not appear 

influenced by passage number at any time point, suggesting that the repair kinetics of DSBs are 
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similar among MSCs of all passages. To more accurately quantitate the number of DSBs on a 

per cell basis, ϒ-H2AX foci were manually counted at 6 hours recovery, showing no significant 

change with passage (Figure 4C). Based on these findings, it appears that the incidence and 

repair kinetics of DSBs following VP16 induced stress do not change with passage in vitro.  

Alterations in NHEJ and HR Mediated Repair of DSBs with Passage and VP16 Exposure 

To determine which repair pathways MSCs utilize to repair DSBs, as well as whether 

pathway dependence is altered by in vitro passage, transcriptional responses of NHEJ and HR 

associated genes were evaluated in our model. KU70, KU80 and DNA-PK were used to 

evaluate NHEJ, while XRCC2, XRCC3, and RAD51 were used to evaluate HR. Following VP16 

stress, NHEJ associated transcripts remained relatively unaltered (less than 2 fold changes 

from baseline) and displayed no passage associated trends in abundance (Figure 5A). 

However, VP16 exposure reduced the abundance of HR associated transcripts, and this 

reduction was augmented with passage in vitro (Figure 5B). The decreased presence of HR 

transcripts following VP16 is consistent with the induction of cell cycle arrest displayed by our 

cells, given that HR can only be performed during S/G2 phases of the cell cycle [15]. The 

augmented decrease in HR associated transcripts with passage (following VP16 exposure) 

does not appear to be due to the reduced cycling-status of MSCs with extended passage, as 

the HR transcript decreases are present immediately following Passage 6 while extended 

culture associated decreases in S/G2/M are not present until Passage 12 (Figure 3A, 

Untreated). Consistent with qPCR results, protein abundance of Rad51 was decreased 

following VP16 stress at all passages. However, the abundance of XRCC3 was unaltered 

(Figure 5C). These data suggest that the reliance of MSCs on HR is reduced following VP16 

stress, and that there is altered double strand DNA repair pathway utilization with in vitro 

passaging of MSCs that precedes the changes in cell cycle distribution associated with in vitro 

culture. 
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To evaluate the functional contribution of NHEJ and HR to DSB repair in MSCs following 

VP16 exposure, NHEJ and HR plasmid reporter assays were utilized. NHEJ and HR reporter 

assays serve as a means to quantitatively evaluate the functional ability of cells to perform 

NHEJ or HR, reported as repair efficiency [22]. The average repair efficiency of NHEJ in 

untreated Passage 6 cells was approximately 0.165, compared to 0.03 for HR, indicating that 

NHEJ is the predominant repair pathway of DSBs in MSCs, consistent with other cell types of 

the body [31] (Figure 5D). The repair efficiency of NHEJ in untreated cells remained consistent 

with passage of MSCs, however, the repair efficiency of HR was significantly reduced by 

passage 12 (Figure 5D). Coincident with reduced HR repair efficiency, untreated cells displayed 

reduced Rad51 protein abundance with passage (Figure 5E). Following VP16 exposure, 

Passage 6 and 9 cells displayed significantly elevated repair efficiency for NHEJ, while the 

efficiency of HR was significantly reduced (Figure 5D). Interestingly, passage 12 cells did not 

display significant changes in repair efficiency following VP16 exposure relative to untreated 

controls (Figure 5D). These results indicate that NHEJ is primarily used to repair DSBs in 

MSCs, and that NHEJ is increased in the context of VP16 stress while HR is decreased. 

However, once cells have undergone extended passage in vitro, MSCs are less able to utilize 

HR for repair, and DSB repair using NHEJ is not functionally increased following VP16 

exposure. These data suggest that prolonged passage of MSCs in vitro can alter the ability to 

utilize NHEJ and HR following exposure to sub-lethal VP16 induced stress. 

 

Discussion 

The plasticity and immunomodulatory potential of MSCs have attracted attention 

regarding their application in cellular therapies for numerous diseases. The ability of MSCs to 

expand in vitro has further increased enthusiasm for clinical application, circumventing potential 
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problems with the acquisition of sufficient cell numbers for transplantation. In addition, MSCs 

can be acquired from various tissues of the body [4], making it possible to utilize cells from a 

patient autologously, nullifying the risks of graft vs. host disease. The ability of MSCs to expand 

ex vivo is beneficial towards their use clinically, highlighting the necessity of understanding how 

cells are changed during culture in vitro. 

In vitro culture has been shown to epigenetically regulate gene expression in MSCs. 

Passage related increases in HDAC activity correlate with increased expression of HDAC4, 

HDAC5, and HDAC6, resulting in reduced H3 and H4 acetylation and reduced OCT4 

expression [9]. Another study documented passage associated alterations in methylation at 

specific CpG sites, many of which regulate differentiation associated genes including RUNX3 

[10], which has been implicated in osteogenesis [32]. In addition to alterations in gene 

regulation, in vitro passaging of MSCs reduces osteogenic differentiation capacity [11, 12]. 

Consistent with these observations, we showed a reduced ability of passage 12 MSCs to 

differentiate under osteogenic conditions relative to lower passages (Figure 1A), indicating that 

our cells had been cultured sufficiently to elicit changes in MSC function. However, we did not 

observe reduced adipogenic differentiation potential up to passage 12 (Figure 1B) which defined 

the endpoint of our model. These studies display important cellular characteristics that are 

altered with ex vivo passage, but little has been done to address how passaging alters their 

response to stresses resulting in DSB formation. Part of the reason DSBs are the most 

damaging of DNA lesions is the result of increased likelihood of erroneous repair, especially 

following NHEJ [33]. Erroneous repair is associated with increased cellular transformation, a 

phenomenon that has been documented with in vitro passage of MSCs [7, 8], alluding to the 

importance of maintaining not only survival, but genomic integrity of ex vivo expanded MSCs. 

The specific induction of DSBs by VP16 enabled us to specifically evaluate MSC responses 

regarding DSB repair. Although any type of DNA lesion can be harmful to a cell, DSBs are 
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considered the most serious and potentially mutagenic [13], hence their focus in our 

investigation. 

To model cellular stress as a consequence of DSB presence, we utilized sub-lethal 

concentrations of VP16 that displayed no passage associated changes in the susceptibility of 

MSCs to VP16 induced cell death (Figure 2). VP16 did not result in overt death, but did increase 

p21 mRNA and elicited a reduction in the proportion of cells in S/G2/M phases of cell cycle 

indicating cell cycle arrest at all passages (Figures 3A and B). Although capable of initiating G1 

arrest following cellular stress [34], we found p16 and p53 transcripts to be reduced by 6 hours 

recovery time (Figure 3B). The earlier and more robust presence of p21 may have chiefly 

contributed to the induction of cell cycle arrest, consistent with previous observations in stressed 

MSCs [35]. These observations show that MSCs display signs of cellular stress in our model of 

VP16 exposure in a manner that is sub-lethal. The absence of cellular death in our model 

enabled us to evaluate the incidence, repair kinetics, and cellular repair pathways of DSBs 

within MSCs with passage. 

Of the numerous types of DNA lesions, VP16 specifically generates DSBs [36]. Within 

minutes following the formation of a DSB within the nucleus, various kinases (including DNA-

PK, ATM and ATR) detect the presence of the break and phosphorylate histone 2A moieties. 

Phosphorylated histone 2A (ϒ-H2AX) present as nuclear puncta corresponding to an individual 

DSB that can be visualized by immunofluorescence [30]. When evaluating ϒ-H2AX foci at each 

time point after VP16 exposure, changes were not observed between passages (Figure 4B) 

suggesting that the rate by which MSCs repair VP16 induced DNA damage is not affected by 

passage in vitro. Notably, fewer than 20% of cells contained 10 or more ϒ-H2AX foci by 48 

hours recovery (Figure 4B). The greatly reduced presence of DSBs following 48 hours recovery 

time suggests that MSCs are capable of recovering from 25µM VP16 exposure, consistent with 
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the sub-lethal nature of the model. These results indicate that the incidence and repair kinetics 

of DSBs following VP16 exposure were similar across passage number in vitro. 

The resolution of DSBs following 48 hours recovery from VP16 exposure suggests the 

intact presence of double strand DNA repair pathways within MSCs for all passages observed. 

DSBs are repaired through two major pathways, NHEJ and HR [15]. To elucidate the 

contribution of these pathways to repair with passage in the context of VP16 stress, 

transcriptional responses of a panel of NHEJ and HR genes were evaluated. Although NHEJ 

transcripts displayed little change, HR associated transcripts were reduced with VP16 exposure 

(Figure 5A and B). Evaluations of Rad51 and XRCC3 protein showed that although XRCC3 was 

unaltered by passage or VP16 exposure, Rad51 was reduced by VP16, consistent with qPCR 

results (Figure 5C). Although these results served as evidence for VP16 exposure and passage 

playing a role in the means by which MSCs repair DNA, qPCR cannot describe which pathways 

are being utilized functionally by MSCs, and to what extent. To functionally and quantitatively 

evaluate the contribution of NHEJ and HR to DSB repair in VP16 stressed MSCs, plasmid 

based reporter assays were utilized. We showed that at baseline, NHEJ was the primary DSB 

repair pathway utilized by MSCs (Figure 5D), consistent with most cell types of the body [17]. In 

lower passage cells (Passages 6 and 9) NHEJ is increased while HR is decreased following 

VP16 stress (Figure 5D). However, in Passage 12 cells, there was a reduced presence of HR at 

baseline, possibly due to the reduced abundance of Rad51 (Figure 5E), and VP16 induced 

increases or decreases in NHEJ or HR (respectively) were not present (Figure 5D). These 

results suggested that in lower passage cells, NHEJ is increased to repair DNA damage while 

HR is decreased, however, later passage cells are unable to increase NHEJ mediated repair 

following VP16 stress. Passaging and irradiation of fibroblasts have been shown to alter the 

abundance and localization of Ku70/80 [37], possibly playing a role in the inability of late 

passage MSCs to increase NHEJ efficiency following VP16 stress (Figure 5D). Quantitation of 
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Ƴ-H2AX foci in untreated cells with passage did not show significant changes (Figure S2), 

suggesting that the genomic integrity of untreated cells is not affected by defects in HR repair 

with ex vivo expansion. In addition, the inability of Passage 12 MSCs to increase NHEJ 

following VP16 exposure did not result in alterations of DSB presence or viability when 

compared to lesser passaged MSCs (Figures 2 and 4). These results are most likely due to the 

sub-lethal nature of our model. It is possible that at higher concentrations of VP16, the 

consequences of less efficient DNA repair would affect the presence or repair kinetics of DSBs. 

However, due to the nature of our assays only evaluating living cells, the phenomenon would 

likely not be detected (a problem evaded by our use of non-lethal concentrations of VP16). 

Nevertheless, our results suggest a defective ability of MSCs to increase NHEJ, their primary 

repair pathway of DSBs, in the context of VP16 stress following successive passage in vitro. 

Our results showing reduction in the efficiency of HR following in vitro culture of MSCs 

are consistent with previous findings in fibroblasts [38].  However, when Seluanov et al. 

evaluated NHEJ efficiency in fibroblasts with successive passaging (up to 70 population 

doublings), NHEJ efficiency was found to be decreased [39]. Our results with normal primary 

human MSCs did not show significant changes in NHEJ efficiency in untreated cells regardless 

of passage, possibly due to the fact that our cells were passaged to a lesser extent (Passage 

12). The results presented in this report contribute unique information by evaluating passage 

related changes in DSB repair in the context of cellular stress, a common circumstance that will 

be encountered when the ability to repair DNA is crucial. In addition, DSB repair being 

quantitatively evaluated in MSCs adds to our understanding of the characteristics of these 

clinically valuable stem cells. Given recent observations that NHEJ utilization varies by tissue 

type in vivo [31] the specific evaluation of DNA repair in human primary marrow derived MSCs 

is relevant to developing optimal models to expand cells ex vivo for diverse cellular therapies.  
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Conclusions 

In conclusion, we have determined that extended culture of human primary bone marrow 

derived MSCs results in an inability to functionally increase NHEJ when encountering sub-lethal 

VP16 stress, and reduced utilization of HR in the absence of stress. Given the necessity of ex 

vivo expansion of MSCs for use in cellular therapies, these results serve as a guideline for 

improving strategies to sufficiently expand MSCs without inducing culture associated alterations 

that could have negative effects on the ability of the cells to persist following transplantation. 

Both the inability of MSCs to increase NHEJ following VP16 stress and reduced osteogenic 

differentiation capacity were detected at Passage 12 (Figures 5D and 1A, respectively). 

Although we do not propose that these events are directly related, they highlight the possibility 

of utilizing a biomarker to determine when ex vivo expanded MSCs display impaired DSB repair 

abilities in the context of stress. The discovery of such biomarkers would enable screening for 

DNA repair deficiencies without the time, cell, and labor intensive requirements of performing 

plasmid based DSB repair assays prior to utilization of ex vivo expanded MSCs for cellular 

therapy. 
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Figure Legends 

Figure 1. Differentiation and surface phenotype of bone marrow derived mesenchymal stem cell 

(MSCs). (A) Osteogenic and (B) adipogenic differentiation at various passages evaluated by 

alizarin red and oil red staining, respectively. (C) Flow cytometry detecting surface expression of 

MSC surface markers. Black lines represent isotype controls, red lines represent indicated 

surface markers. 

 

Figure 2. Viability of MSCs with passage following 24 hours etoposide (VP16) exposure. MSCs 

at various passages were exposed to 25µM VP16 for 24 hours, then allowed 0, 6, or 48 hours to 

recover in fresh medium before evaluation of viability by Presto Blue viability reagent. Values 

are reported relative to untreated controls. * Indicates a significant decrease in viability relative 

to untreated control, Student’s T-test, p-value < 0.05. 

 

Figure 3. Effects of VP16 on cell cycle distribution and cell cycle inhibitor transcript abundance 

with passage. (A) Cell cycle distribution of MSCs at various passages exposed to 25µM VP16 or 

medium only control for 24 hours. (B) qPCR evaluation of cell cycle inhibitor mRNA expression 

following exposure of MSCs to 25µM VP16 for 24 hours followed by 0, 6, or 48 hours recovery 

in fresh medium. Values are indicated as fold change relative to untreated control. 

 

Figure 4. DNA double strand break incidence and repair kinetics in MSCs exposed to 25µM 

VP16. (A) Representative Ƴ-H2AX staining (Yellow) of Passage 6 MSCs exposed to VP16 for 

24 hours followed by 0, 6, or 48 hours recovery in fresh medium. Ƴ-H2AX (Yellow) displays 

nuclear co-localization with DAPI (blue). (B) Percentage of MSCs displaying 10 or greater Ƴ-
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H2AX foci at each time point at various passages. (C) Average number of Ƴ-H2AX foci per cell 

at 6 hours recovery time for passages 6 through 12. “NS” indicates no significant difference 

between any passage by One-Way ANOVA with Holm-Sidak Post Hoc, p-value > 0.05. 

 

Figure 5. Non-homologous end joining (NHEJ) and homologous recombination (HR) 

transcriptional, protein, and functional repair responses to 25µM VP16 with passage. qPCR 

evaluation of (A) NHEJ and (B) HR associated mRNA expression following exposure of MSCs 

to VP16 for 24 hours followed by 0 or 48 hours recovery in fresh medium. Fold changes are 

indicated relative to untreated controls. (C) Western analysis of Rad51 and XRCC3 after VP16 

exposure with passage. ‘Untr’ indicates untreated cells. ‘0’, ‘6’, or ‘48’ indicates recovery time (in 

hours) following 24 hours exposure to 25uM VP16. (D) NHEJ and HR plasmid reporter assays 

for Passage 6, 9, and 12 MSCs exposed to VP16 or medium only control for 24 hours. (E) 

Western analysis of Rad51 in untreated MSCs with passage. # Indicates significant change 

relative to untreated control, * represents significant change relative to indicated group, One-

Way ANOVA with Holm-Sidak Post Hoc, p-value < 0.05. 

 

Supplementary Figure 1. Apoptosis associated transcriptional responses of MSCs following 

VP16 exposure with passage. (A) Pro-apoptotic and (B) anti-apoptotic mRNA expression 

evaluated by qPCR in MSCs exposed to 25µM VP16 for 24 hours followed by 0, 6, or 48 hours 

recovery in fresh medium. Fold changes are indicated relative to untreated controls. 
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Supplementary Figure 2. Average number of Ƴ-H2AX foci per cell in untreated MSCs for 

passages 6 through 12. “NS” indicates no significant difference between any passage by 

Kruskal-Wallis test, p-value > 0.05. 
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Figure 1. Differentiation and surface phenotype of bone marrow derived mesenchymal 

stem cell (MSCs). 

Hare et al. 2016. In Vitro Expansion of Bone Marrow Derived Mesenchymal Stem Cells Alters 

DNA Double Strand Break Repair of Etoposide Induced DNA Damage. Stem Cells International. 
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Figure 2. Viability of MSCs with passage following 24 hours etoposide (VP16) exposure. 
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Figure 3. Effects of VP16 on cell cycle distribution and cell cycle inhibitor transcript 

abundance with passage. 
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Figure 4. DNA double strand break incidence and repair kinetics in MSCs exposed to 

25µM VP16. 
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Figure 5. Non-homologous end joining (NHEJ) and homologous recombination (HR) 

transcriptional, protein, and functional repair responses to 25µM VP16 with passage. 
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Supplementary Figure 1. Apoptosis associated transcriptional responses of MSCs 

following VP16 exposure with passage. 
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Supplementary Figure 2. Average number of Ƴ-H2AX foci per cell in untreated MSCs for 

passages 6 through 12.  
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DOI: 10.1155/2016/8270464. 
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Gene Forward Reverse 

GUSB AAACGATTGCAGGGTTTCAC CTCTCGTCGGTGACTGTTCA 

CDKN1A (p21) CCTGGCACCTCACCTGCTC CGGCGTTTGGAGTGGTAGA 

CDKN2A (p16) GGGGTCGGGTAGAGGAGGT CCGTGGAGCAGCAGCAGC 

TP53 (p53) GCACATGACGGAGGTTGTGAG ATGGTGGTACAGTCAGAGCCAAC 

KU70 CCAATAAAGCTCTATCGGGAAAC TTTCTCCAGTATAATCTGACGACTCC 

KU80 AAAATTAAAGACTGAGCAAGGGG TAGAACACGGAAGTTTTCAGCAG 

PRKDC (DNA-PK) GCGAAGCACTGGCTTAGC CTAACACTTCATCTTTAGGGACCC 

XRCC2 GCAGTTGGTGAATGGCGTT GCACAGGTGAATCTTCATCAGC 

XRCC3 CGGCATCACTGAGCTGGC AGCTCTCCTGGAACGTCAGTG 

RAD51 GTCTCTCTGGCAGTGATGTCCT TCTGTAAAGGGCGGTGGC 

BBC3 (Puma) AGACAAGAGGAGCAGCAGCG CTGGGTAAGGGCAGGAGTCC 

PMAIP1 (Noxa) AGCTGGAAGTCGAGTGTGCTACT GCAAGTTTTTGATGCAGTCAGG 

BCL2 (Bcl-2) TGTCGCAGAGGGGCTACG GGATGCGGCTGGATGGG 

BCL2L1 (Bcl-XL) TCCAGGAGAACGGCGGC GAGCCCAGCAGAACCACG 

 

Supplementary Table 1. qPCR Primer sequences (5’ to 3’). 

Hare et al. 2016. In Vitro Expansion of Bone Marrow Derived Mesenchymal Stem Cells Alters 

DNA Double Strand Break Repair of Etoposide Induced DNA Damage. Stem Cells International. 

DOI: 10.1155/2016/8270464. 
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Abstract 

Mesenchymal stem cells (MSCs) are abundant throughout the body, and regulate 

signaling within tumor microenvironments. Wnt signaling is an extrinsically regulated pathway 

that has been shown to regulate tumorigenesis in many types of cancer. After evaluating a 

panel of Wnt activating and inhibiting molecules, we show that primary human MSCs increase 

the expression of Dkk-1, an inhibitor of Wnt signaling, into the extracellular environment 

following chemotherapy exposure in a p53 dependent manner. Dkk-1 has been shown to 

promote tumor growth in several models of malignancy, suggesting that MSC derived Dkk-1 

could counteract the intent of cytotoxic chemotherapy, and that pharmacologic inhibition of Dkk-

1 in patients receiving chemotherapy treatment for certain malignancies may be warranted. 
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Materials and methods 

MSC acquisition and cell culture 

MSCs cultures were derived from de-identified bone marrow specimens from patients at 

the West Virginia University Cancer Institute and cultured as previously described [1]. Patients 

had no history of exposure to chemotherapy, radiation, or malignancy. HS-5 and HS-27A cell 

lines were purchased from ATCC (Manassas, VA, USA) and cultured as suggested by the 

supplier.  

Chemotherapy and drug exposures 

Chemotherapy exposure was at sub-lethal concentrations for all experiments. Etoposide 

(VP16) and melphalan were prepared as previously described [2] and 5-FU (Selleck Chemicals, 

Boston, MA, USA) was diluted to 10µg/mL in DMSO prior to use. GolgiStop (BD Biosciences, 

San Jose, CA, USA) was used following manufacturer guidelines. pifithrin-α, nutlin-3, and RU-

486 (Selleck Chemicals, Boston, MA, USA) were diluted in DMSO, and recombinant Wnt3a 

(R&D Systems, Minneapolis, MN, USA) was dissolved in phosphate buffered saline prior to use. 

RNA isolation and qPCR 

RNA was isolated and analyzed by qPCR as previously described [1]. The following 

primer sequences were used (5’ to 3’), DKK1 (F-CGTCACGCTATGTGCTGCC, R-

GCTTTCAGTGATGGTTTCCTCA), SFRP1(F-AGTTCTTCGGCTTCTACTGGC, R-

AACTCGTTGTCACAGGGAGGAC), WNT2B (F-TTGACAACTCTCCAGATTACTGTGT, R-

ATTTCACAACCGTCTGTTCCTT), WNT3A (F-GATGGTGTCTCGGGAGTTCG, R-

GTGGCACTTGCACTTGAGGT), WNT4 (F-GGTCACGCACTGAAGGAGAAG, R-

CAAGTACACCAGGTCCTCATCTGT), WNT5A (F-CTCTGTTTTTGGCAGGGTGA, R-

GCAGCCGCAGGTGGACA), WNT10B (F-GGTCCACGAGTGTCAGCAC, R-
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CAGCCAGCATGGAGAAGGA), GUSB (F-AAACGATTGCAGGGTTTCAC, R-

CTCTCGTCGGTGACTGTTCA). 

Western blotting 

Western blotting was performed as previously described [1], using the following 

antibodies from Cell Signaling Technologies (Danvers, MA, USA), Dkk-1 (#4687),p53 (#2524), 

and Phosphorylated-p53 (#9286). Antibodies were diluted as directed by manufacturer. 

Dkk-1 ELISA 

Dkk-1 ELISA was performed using Human DuoSet Dkk-1 ELISA (R&D Systems, 

Minneapolis, MN, USA) following manufacturer recommendations. Cellular supernatants were 

diluted 1:4 prior to analysis. 

p53 siRNA Knockdown 

p53 specific siRNA and scramble controls were utilized obtained GE Dharmacon 

(Lafayette, CO, USA), and used following manufacturer protocol. Knockdowns were performed 

overnight, followed by 48 hours recovery in basal culture medium prior to chemotherapy 

exposure. 

 

Introduction 

MSCs are a mesenchymal derived stromal population that is capable of differentiating 

into osteoblasts, adipocytes, and chondrocytes [3]. Although abundant in bone and adipose 

tissues, MSCs have been shown to be actively recruited specifically to sites of the body where 

they regulate angiogenesis, inflammation, and invasion of tumor cells [4]. Once within this 

functionally distinct tumor niche, MSCs influence the behavior of a tumor through the expression 



www.manaraa.com

 96 

of various proteins which regulate signaling pathways that influence survival and proliferation 

[5]. The Wnt signaling pathway has been described as influencing malignancy in certain tumor 

microenvironments, extrinsically regulated by the abundance of secreted activating and 

inhibitory molecules into the extracellular milieu [6]. Humans express 19 Wnt activating ligands, 

and several inhibitory proteins including soluble Frizzled proteins (SFRP) and Dickkopf proteins 

(Dkk), which inhibit Wnt signaling by quenching extracellular Wnt ligands and preventing the 

assembly of the Wnt surface receptor complex, respectively [7]. MSC derived Wnt ligands have 

been shown to initiate an epithelial-mesenchymal transition phenotype of colon cancer cells [8] 

and activation of Wnt signaling with lithium chloride reduced tumor burden in a murine model of 

myeloma [9], highlighting the importance of Wnt signaling in the tumor microenvironment. 

We have reported previously that stromal cells of the bone marrow have a reduced 

ability to support optimal hematopoietic cell function following exposure to chemotherapy 

[2,10,11]. Given the observation that MSCs express Wnt activating and inhibiting molecules 

[12], and the importance of Wnt signaling within the tumor microenvironment, we evaluated the 

expression of Wnt regulating molecules by primary human MSCs following chemotherapy 

exposure. In the current study, we show that Dkk-1, an inhibitor of Wnt signaling that has been 

implicated in the progression of various tumors, is elevated in primary human MSCs after 

exposure to various chemotherapeutic agents. 

 

Results 

Dkk-1 expression is elevated in primary human MSCs after chemotherapy exposure 

To determine whether chemotherapy exposure alters the expression of MSC derived 

Wnt regulating molecules, MSCs were exposed to etoposide (VP16) for 24 hours followed by 

qPCR analysis. Of a panel of Wnt activating and inhibitory molecules, VP16 significantly 
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increased the abundance of DKK1 mRNA (Figure 1a). DKK1 transcripts were elevated following 

exposure to VP16, melphalan, and fluorouracil (5-FU), indicating that the response was 

consistent among chemotherapeutics with various mechanisms of action (Figure 1b). Dkk-1 

protein was also elevated, evaluated by Western blot analysis (Figure 1c), following inhibition of 

secretion using GolgiStop (BD Biosciences). The requirement for inhibition of secretion for 

detectable protein accumulation suggests that Dkk-1 is quickly secreted following transcription 

(Figure 1c). Finally, VP16, melphalan, and 5-FU elevated the abundance of Dkk-1 protein in 

culture supernatants (Figure 1d). These results indicate that primary human MSCs display 

elevated Dkk-1 expression following exposure to cytotoxic stress by drugs with various 

mechanisms of action. 

Elevated Dkk-1 expression is regulated by p53 

The necessity of GolgiStop to visualize intracellular Dkk-1 by Western (Figure 1c) 

suggested that the protein is very rapidly secreted and that elevated expression of Dkk-1 

following chemotherapy exposure was potentially regulated at the mRNA level. To determine 

the mechanism by which Dkk-1 is elevated following chemotherapy induced stress, we 

investigated the potential influence of signaling pathways with promoting elements within the 

DKK1 promoter. The promoter region of DKK1 has been shown to contain several TCF/LEF 

response elements, enabling β-catenin mediated gene transcription following activation of the 

Wnt signaling pathway [13]. Given that exogenous activation of Wnt signaling by rWnt3a does 

not increase the transcriptional abundance of DKK1, and the nuclear abundance of β-catenin is 

not increased following VP16 exposure (Supplemental Figure 1), it is unlikely that Wnt signaling 

regulates DKK1 expression in MSCs following chemotherapy exposure. Glucocorticoid 

response elements (GRE) are also present within the DKK1 promoter [14], consistent with the 

elevation of DKK1 mRNA following dexamethasone exposure (Supplemental Figure 2a). 

However, inhibition of GRE signaling using RU-486 does not diminish chemotherapy induced 
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DKK1 elevations following chemotherapy exposure (Supplemental Figure 2b), suggesting that 

glucocorticoid signaling does not regulate DKK1 in MSCs after chemotherapy. 

Previously, the promoter region of DKK1 was shown to contain a p53 response element 

[15]. Exposure of MSCs to VP16, melphalan, or 5-FU resulted in increased levels of 

phosphorylated p53 (Figure 2a). Inhibition of the transcriptional function of p53 with pifithrin-α 

resulted in a dose-dependent decrease in DKK1 abundance when combined with melphalan 

exposure (Figure 2b). In addition, inhibition of p53 by targeted siRNA resulted in decreased 

abundance of soluble Dkk-1 from control, as well as chemotherapy exposed, MSCs (Figure 2e). 

Conversely, activation of p53 using nutlin-3, an MDM2 inhibitor, increased DKK1 abundance in 

a dose-dependent manner when combined with melphalan (Figure 2c), as well as when used 

with VP16, melphalan, or 5-FU (Figure 2d). Contrary to primary MSCs, HS-5 and HS-27A 

human cell lines display deregulated p53 function due to the expression of human 

papillomavirus virus E6 and E7 proteins [16]. Consistent with the necessity of p53 to elevate 

Dkk-1 expression following chemotherapy in primary MSCs, exposure of HS-5 and HS-27A cells 

to sub-lethal concentrations of chemotherapy or nutlin-3 did not elevate Dkk-1 expression 

(Supplemental Figure 3), unlike primary human MSCs (Figures 1d and 2c). These results 

suggest that p53 regulates the elevated expression of Dkk-1 following exposure of MSCs to 

various chemotherapeutics.  

 

Discussion 

Our results show that MSC derived Dkk-1 is elevated in cells following cytotoxic drug 

exposure suggesting that it could be elevated in the tumor microenvironment following treatment 

with chemotherapy. VP16, a topoisomerase II inhibitor, melphalan, a DNA alkylating agent, and 

5-FU, a pyrimidine analog that inhibits thymidine synthase [17–19] were all capable of 
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increasing Dkk-1 expression, indicating the broad spectrum of stressors which can elicit such an 

effect. Elevated Dkk-1 could have negative consequences for patients suffering from certain 

tumors. For example, Dkk-1 has been shown to promote the migration and invasion of 

hepatocellular carcinoma cells [20], and to promote the growth of certain esophageal, non-small 

cell lung cancers, and myeloma cells [21–23]. The effects of Dkk-1 appear tumor specific, since 

Dkk-1 has been shown to act as a tumor suppressor in certain cancers, such as melanoma and 

colon [24,25]. Nevertheless, these findings suggest that chemotherapy could be having an 

undesired effect in these cancers, potentially leading to unsuccessful treatment or relapse of 

disease.  

To our knowledge, this is the first time Dkk-1 has been shown to be elevated in MSCs 

following exposure to chemotherapy. However, it has been shown previously that certain cancer 

cell lines with functional p53 react similarly in response to chemotherapy induced stress [26]. 

Importantly, our observations are the first to include primary human MSCs which have been 

shown to be a component of the tumor microenvironment. Wang et al. and Shou et al. have also 

described the role of p53 in chemotherapy induced Dkk-1 expression, supporting and refuting 

the notion in tumor cell lines, respectively [15,27]. Our data are consistent with the assertion that 

p53 is playing a role in this regulation, however, it is likely that the phenomenon is regulated 

differently between cell types. The necessity of functional p53 for normal cellular function makes 

targeting the p53 pathway unfavorable in conjunction with cytotoxic therapies, suggesting that 

pharmacologic targeting of this response would be best directed at soluble Dkk-1 protein.  

These observations align with a recent publication describing increased Dkk-1 protein in 

the serum of patients who have received chemotherapy [28], indicating that MSCs could be one 

potential source of this response. BHQ-880, a monoclonal anti-Dkk-1 antibody which has 

cleared phase Ib clinical trials [29], could theoretically be used in conjunction with chemotherapy 

to prevent the undesired effects of Dkk-1 on tumor phenotype in patients being treated with 
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chemotherapy for certain malignancies. A more in depth analysis needs to be performed to 

understand which tumors respond to Dkk-1 as an oncoprotein and which respond to Dkk-1 as a 

tumor suppressor prior to use in vivo. Overall, our findings show that chemotherapy treatment 

may have an undesirable effect on the tumor microenvironment with future work required to 

evaluate whether MSC derived Dkk-1 negatively influences tumor behavior in the context of 

certain malignancies. 
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Figure Legends 

 

Figure 1 Dkk-1 is elevated in MSCs following chemotherapy exposure. (A) qPCR evaluating 

Wnt inhibitory and activating molecules in MSCs exposed to 100µM etoposide (VP16) or diluent 

control for 24 hours. (B) qPCR evaluating DKK1 expression in MSCs exposed to 100µM VP16, 

25 µg/mL melphalan (Mel), 300 µg/mL fluorouracil (5-FU), or medium-only control. VP16 and 

melphalan exposures were 24 hours, 5-FU was incubated with MSCs for 1 hour followed by 23 

hours incubation in normal growth medium. These chemotherapy conditions were kept 

consistent throughout the remaining experiments unless otherwise specified. (C) Western blot 

analysis of Dkk-1 in MSCs exposed to chemotherapy or medium-only control, in the presence of 

GolgiStop or diluent alone for 24 hours. Recombinant human Dkk-1 (rDkk-1) was included as a 

control. (D) Dkk-1 ELISA analysis of supernatants from MSCs exposed to chemotherapy or 

medium-only control for 72 hours. 5-FU was administered for 1 hour followed by 72 hours 

incubation in basal medium. *Indicates p-value < 0.05, using Student’s T-test (A) or One-Way 

ANOVA with Dunnett’s Post Hoc (B and D). 

 

Figure 2 p53 regulates Dkk-1 following chemotherapy exposure of MSCs. (A) Western blot 

analysis of phosphorylated (phospho) and total p53 protein in MSCs following 6 hours exposure 

to chemotherapy or medium-only control. (B) qPCR evaluation of DKK1 in MSCs exposed to 

melphalan in combination with increasing concentrations of pifithrin-α (PTHα) for 24 hours. Cells 

were pre-treated with PTHα for 20 minutes prior to chemotherapy, and PTHα was spiked into 

culture vessels every 8 hours. (C) qPCR evaluation of DKK1 in MSCs exposed to melphalan in 

combination with increasing concentrations of nutlin-3 for 24 hours. Cells were pre-treated with 

nutlin-3 for 20 minutes prior to chemotherapy. (D) qPCR analysis of MSCs exposed to 
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chemotherapy in the presence of 25µM nutlin-3 or diluent control for 24 hours. (E) Dkk-1 ELISA 

analysis of MSCs transfected with two separate siRNA targeting p53 mRNA (or scramble 

control), then exposed to chemotherapy or medium-only control for 24 hours. Cells conditioned 

medium for 72 hours prior to analysis. *Indicates p-value < 0.05, One-Way ANOVA with Holm-

Sidak Post Hoc. 

 

Supplementary Figure 1 β-catenin mediated signaling does not regulate chemotherapy 

induced DKK1 expression in MSCs. (A) rWnt3a was cultured with MSCs for 24 hours at 

indicated concentrations prior to RNA isolation and qPCR evaluation of DKK1. (B) MSCs were 

exposed to 100uM VP16 for 24 hours, followed by nuclear fractionation and evaluation of β-

catenin by Western blotting. HDAC1 and GAPDH were used as nuclear and cytosolic loading 

controls (respectively). 

 

Supplementary Figure 2 Glucocorticoid signaling does not regulate chemotherapy induced 

DKK1 expression in MSCs. (A) MSCs were cultured with indicated concentrations of 

dexamethasone for 24 hours prior to RNA isolation and qPCR evaluation of DKK1. (B) MSCs 

were exposed to 100uM VP16 or 25µg/mL melphalan (Mel) for 24 hours in the presence of 

10µM RU-486 (glucocorticoid receptor antagonist) or DMSO control followed by qPCR analysis 

of DKK1. 

 

Supplementary Figure 3 Dkk-1 is not elevated in p53 deregulated cell lines following 

chemotherapy or nutlin-3 exposure. HS-5 (A) and HS-27A (B) cells were exposed to sub-lethal 

concentrations of VP16 or melphalan (Mel) for 72 hours, or 5-FU for 1 hour followed by 72 hours 
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incubation in basal medium, then evaluated by Dkk-1 ELISA. (C) HS-5 and HS-27A cells were 

exposed to indicated concentrations of nutlin-3 for 24 hours, followed by DKK1 evaluation by 

qPCR. 
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Figure 1. Dkk-1 is elevated in MSCs following chemotherapy exposure. 
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Figure 2. p53 regulates Dkk-1 following chemotherapy exposure of MSCs. 
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Supplementary Figure 1. β-catenin mediated signaling does not regulate chemotherapy 

induced DKK1 expression in MSCs. 
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Supplementary Figure 2. Glucocorticoid signaling does not regulate chemotherapy 

induced DKK1 expression in MSCs. 
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Supplementary Figure 3. Dkk-1 is not elevated in p53 deregulated cell lines following 

chemotherapy or nutlin-3 exposure. 
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General Discussion 
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 The Friedenstein laboratory observed the presence of stromal cells within the bone 

marrow in 19761. It was not until 1987 that the ability of these cells to undergo osteogenic 

differentiation was appreciated, following observations of mineralized ECM after expansion ex 

vivo2. Bone marrow stromal support of hematopoietic cells was addressed by Michael Dexter 

after developing the first in vitro culture system of HSCs, using bone marrow stromal cell feeder 

layers3,4. Once the supportive nature of bone marrow stromal cells was understood, work by 

David Scadden, Paul Frenette, Daniel Link, and Sean Morrison laboratories, among others, 

contributed greatly to the understanding of their heterogeneity reflected as the various cellular 

phenotypes described in Chapter I. Although these findings displayed the plasticity of various 

bone marrow stromal cell populations, it was Pittenger et al. who first characterized a population 

of mesenchymal precursor cells capable of differentiating into osteoblasts, chondrocytes, and 

adipocytes, coining the name “MSCs”5. In addition to supporting homeostatic functions of the 

body, MSCs have been observed to influence the activities of malignant cells. Evidence for this 

phenomenon was proposed by Stephen Paget in 1889. In a report outlining his “seed and soil” 

hypothesis, Paget postulated that the propensity of metastatic cells to induce secondary tumors 

is influenced by the environment in which they reside6. This early observation later cumulated 

into an understanding of what is known as the tumor microenvironment, shown to be influenced, 

in part, by actively recruited MSCs from local environments as well as more distant anatomical 

sites7.  

As the understanding of the biology of MSCs grew, their attributes beyond stem cell 

regeneration and support became apparent. MSCs have been shown to produce an immune 

suppressive environment, in part, through the secretion of anti-inflammatory cytokines8. These 

attributes, in combination with their plasticity and ability to support hematopoietic stem and 

progenitor cells, led to investigations focused on potential application in MSC transplantation 

therapies. Edwin Horwitz was among the first to conceptualize this idea, pioneering the use of 
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MSC transplantation for the treatment of osteogenesis imperfecta9. These initial successes led 

to the development of current MSC therapies utilized for the treatment of GVHD, and in pre-

clinical animal models of systemic lupus erythematosus and rheumatoid arthritis10. These 

attributes of MSCs highlight their importance in vivo, as well as for use in cellular therapies. 

Collectively, these observations underpin the necessity to better understand the biology of these 

cells in a variety of contexts.  

Previous studies in our laboratory have focused on MSCs and osteoblasts in their ability 

to support hematopoiesis following exposure to high dose chemotherapy regimens, such as 

those prior to bone marrow transplantation11,12. Patients who have undergone high dose 

chemotherapy treatment for bone marrow transplantation as well as the treatment of numerous 

malignancies have been shown to display hematopoietic cell deficits for years following 

treatment. For example, Corre et al. described deficiencies in CD4+ T cell counts in patients two 

years following myeloablative chemotherapy and allogenic HSC transplantation13. This 

observation suggests an inability of transplanted HSCs to adequately repopulate blood and 

lymphoid tissues, or sustained damage to the supportive bone marrow microenvironment as a 

consequence of chemotherapy treatment. The latter of these two possibilities has been 

previously investigated by our laboratory. For example, Clutter et al. showed the protein 

abundance of CXCL12 to be decreased by chemotherapy exposed bone marrow stromal cells, 

resulting in the reduced ability to chemoattract a murine pro-B cell line towards the supportive 

stromal monolayer14. Previous members of our laboratory have also shown that the expression 

of cytokines relevant to the regulation of hematopoietic support, such as interleukin-6, 

neurotrophins, and TGF-β11,15,16 are dysregulated by the exposure of stromal components of the 

bone marrow microenvironment to chemotherapy. These observations illustrate the vulnerability 

of cells comprising this critical environment to damage that alters their ability to regulate 

hematopoiesis. The work described in this dissertation expands upon these observations, as 
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well as looking more broadly into ways by which the function of bone marrow stromal cells is 

affected by chemotherapy beyond the realm of hematopoietic support.    

As discussed in Chapter I, osteoblasts contribute to the support of hematopoietic cell 

development within the bone marrow niche. Rellick et al. evaluated the effects of chemotherapy 

on TGF-β and interleukin-6 expression by osteoblasts, showing increased and decreased 

expression, respectively, following exposure to a variety of chemotherapeutic agents11,15. The 

findings described in Chapter II of this dissertation further investigated the alteration of 

osteoblast cells by chemotherapy exposure, expanding observations to both hematopoietic 

support factors and effects on cellular plasticity. Utilizing murine pre-osteoblast cell lines at 

previously described states of differentiation17,18, we showed that chemotherapy induced 

reductions in the mRNA abundance of RUNX2 and SP7 (the gene that encodes osterix). 

Consistent with this observation, exposure of MC3T3E1 and 7F2 cell lines to VP16 or 

melphalan reduced osteogenic differentiation potential19. These results suggested a reduced 

ability of pre-osteoblasts to differentiate into a more mature osteogenic phenotype following 

chemotherapy exposure.  A potential consequence of reduced osteogenic differentiation within 

the bone marrow would include a deficit in mature osteoblast cells, which has been shown by 

Ding and Morrison to regulate the proliferation and differentiation of common lymphoid 

progenitors20. Bone is continually degraded by osteoclasts, then subsequently regenerated by 

osteoblasts in a process known as bone remodeling21. A deficiency in osteoblast progenitor 

differentiation could lead to an imbalance in the process, favoring bone degeneration and 

ultimately resulting in a reduced number of osteoblasts within the bone marrow 

microenvironment. Given the necessity of osteoblasts in the support of lymphoid progenitors, 

chemotherapy induced reduction in osteogenic differentiation could potentially account for 

lymphoid mediated immune deficits documented in patients who have received chemotherapy 

treatment. For example, Wiser et al. observed reduced immunoglobulin concentrations in 
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women years after receiving chemotherapy treatment for breast cancer22. Chemotherapy 

induced deficits in osteogenesis could also have negative effects on the skeletal system. 

Reduced bone mineral density and increased fracture incidence are a common side effect of 

patients who have been treated with high doses of chemotherapy. For example, a study by 

Tillmann et al. described these deficiencies in children who had been treated with high dose 

chemotherapy for acute lymphoblastic leukemia23 and Hui et al. observed a similar phenomenon 

in women who had been previously treated for various gynecologic cancers24. More work needs 

to be done to understand the events that mediate chemotherapy induced deficiencies in 

osteogenesis in vivo, and how these can be altered to prevent such toxicities during 

chemotherapy treatment. 

In addition to reduced osteogenic differentiation potential, observations discussed in 

Chapter II described deficiencies in the ability of osteoblasts to generate ECM and ECM-

associated proteins that have been shown to regulate hematopoiesis19. We showed that in pre-

osteoblast and differentiated osteoblast cells Col1α1 mRNA was decreased following exposure 

to chemotherapy19. Consistent with this decrease, visible deficits in endosteal ultrastructure 

were observed by scanning electron microscopy when evaluating femurs from mice treated with 

VP1619. These results suggested that the ECM surrounding osteoblast cells is damaged 

following chemotherapy stress both in vitro and in vivo, a phenomenon that could have negative 

consequences for hematopoietic cell regulation. As discussed in Chapter I, various 

hematopoietic regulating molecules depend on ECM within the hematopoietic niche to regulate 

cytokine concentration gradients and promote the retention of necessary molecules near the 

niche. One such molecule is OPN, which we showed to also be reduced in pre-osteoblasts 

exposed to melphalan19. Interestingly, the promoter regions of Col1α1 and OPN both contain 

response elements for RUNX2, which we showed was decreased in both pre- and mature 

osteoblast cells19, suggesting that reduced RUNX2 expression following chemotherapy 
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exposure could potentially mediate deficits in Col1α1 and OPN following chemotherapy 

exposure.  More work needs to be done to determine whether actionable targets mediating 

RUNX2 abundance after chemotherapy exposure exist, and means by which they could be 

pharmacologically modulated to prevent chemotherapy induced alterations in osteoblast 

function following chemotherapy treatment in vivo. In addition to ECM related deficits, we 

showed that CXCL12 protein was reduced in both pre-osteoblasts and mature osteoblast cells 

following VP16 or melphalan exposure19. This is consistent with our previous observations in 

lesser differentiated bone marrow stromal cells14 as well as primary human osteoblasts11, 

highlighting the breadth of this response between varying stromal differentiation states and 

species models. CXCL12 has been shown to be vital to the support of hematopoietic cells within 

the bone marrow25, and chemotherapy-induced decreases in its expression could hamper 

hematopoietic regeneration following insult such as chemotherapy treatment. Liang et al. 

showed that co-transplantation of MSCs overexpressing CXCL12 with CD34+ cells after 

myeloablative chemotherapy promoted hematopoietic reconstitution in a murine transplant 

model26. These results show the potential promise of MSC transplantation to promote 

hematopoietic regeneration following chemotherapy treatment. 

Given the potential therapeutic applications of MSCs, including the promotion of 

hematopoietic regeneration as well as treating many other diseases (discussed in Chapter I), it 

is important to better understand their biology so they can be optimally utilized for 

transplantation therapies. In a recent clinical trial, MSC transplantation was utilized to treat 

osteogenesis imperfecta27 and only showed efficacy when 1x107 MSCs per kilogram were 

administered to patients. Similar cell numbers have been needed to treat GVHD and myocardial 

infarction10, displaying the difficulty in acquiring enough cells for human therapies. To isolate 

enough MSCs for use clinically, ex vivo expansion is required, highlighting the necessity of 

understanding how cells are altered during expansion and the consequences such expansion 
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could have once cells are administered in vivo. In Chapter III, we evaluated phenotypical 

changes of MSCs following ex vivo expansion, as well as changes in the means by which they 

responded to DNA double strand break stress, using VP16 as a way of eliciting such damage. 

Consistent with the presence of sub-lethal DNA damage, 25µM VP16 induced cell cycle arrest, 

coincident with elevated p21 and Ƴ-H2AX, without eliciting overt cell death28. Although the 

cellular response and repair kinetics of DNA damage were consistent with passage, the means 

by which the cells repaired DNA was altered over time. VP16 reduced the mRNA and protein 

abundance of HR associated genes, consistent with functional repair along the HR pathway 

being reduced as evaluated by a plasmid based reporter assay28. Although gene expression for 

NHEJ associated proteins was not altered by passage or VP16 exposure, the ability of MSCs to 

enact NHEJ repair was reduced with passage in vitro28. These results illustrate the potential for 

extensively passaged MSCs to demonstrate impaired NHEJ in the context of genotoxic stress, a 

phenomenon that would not be desirable when transplanting cells into a human being. These 

findings indicate that MSCs should not be expanded extensively in vitro prior to patient 

administration. Efforts have been contributed towards the optimization of in vitro culture 

conditions during MSC expansion. For example, Doucet et al. have shown that human platelet 

lysate was favorable to fetal bovine serum for culture supplementation, resulting in increased 

MSC expansion potential29. Whether the addition of culture supplements can prevent culture 

associated phenotypic changes (such as in DNA repair capabilities) needs to be addressed 

further. Another approach to lessen culture associated changes in MSC phenotype would be 

optimizing MSC isolation techniques to maximize cellular yield. Starting with an increased 

number of MSCs would lessen the number of population doublings necessary to reach clinically 

relevant cell numbers for transplantation. An attractive means of achieving this goal would be to 

use adipose derived MSCs. The majority of clinical trials utilizing MSCs have used cells derived 

from the bone marrow due to the fact that they are very well characterized30. In addition, MSCs 

derived from adipose tissue have been shown to have a reduced differentiation potential 
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towards the osteogenic linage31. Nevertheless, adipose derived MSCs are generally easier to 

acquire given the less invasive nature of their isolation (liposuction), and the willingness of 

patients to part with the specimen, providing an abundant source of MSCs for use in clinical 

therapies. The clinical potential of adipose derived MSCs needs to be better characterized in the 

context of transplantation to provide confidence towards their use in human therapies. 

Findings outlined in Chapters II and III have described dysregulations of the beneficial 

and homeostatic functions of MSCs within our bodies following chemotherapy exposure. 

However, damaged MSCs can also elicit pathogenic effects in certain scenarios. A potential 

example of this phenomenon is described in Chapter IV, where Dkk-1, a negative regulator of 

certain tumor activities, is described to be elevated following chemotherapy exposure of MSCs 

in a p53 dependent manner. Through the binding to LRP5/6 co-receptors, Dkk-1 sterically 

hinders aggregation of the Wnt surface receptor complex, resulting in inhibition of downstream 

signaling32. Dkk-1 overexpression has been documented in several types of cancer such as 

prostate33, esophageal34, myeloma35, and non-small cell lung cancers36. Over expression of 

Dkk-1 has had negative consequences on tumor phenotype in these diseases. For example, 

Thudi et al. showed that overexpression of Dkk-1 in prostate tumor cells led to increased tumor 

mass and metastasis in a murine model of prostate cancer37, and Nagato et al. showed that 

anti-Dkk-1 antibody treatment reduced invasiveness in vitro and tumor growth in a murine model 

of lung cancer38. Given observations of MSCs homing to the tumor microenvironment 

(discussed in Chapter I of this dissertation), our finding that the exposure of MSCs to various 

chemotherapeutics increases the expression of Dkk-1 shows the potential for chemotherapy 

treatment to result in increased abundance of Dkk-1 protein in the tumor microenvironment. In 

cancers which have been shown to be more aggressive in the presence of elevated Dkk-1 (such 

as prostate and lung), Dkk-1 could potentially be pharmacologically regulated to prevent this 

outcome. BHQ880, an anti-Dkk-1 neutralizing antibody described in the Discussion section of 
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Chapter IV, has been used in clinical trials39; however, the necessity of intravenous 

administration and the costs inherent to antibody therapies could limit clinical use as well as 

patient access to the drug. While clinical trials regarding the application of anti-Dkk-1 therapies 

should continue, investigations into the clinical use of chemical inhibitors of Dkk-1 should also 

be explored. Pelletier et al. have developed a small molecule (WAY-262611) which inhibits Dkk-

1 mediated inhibition of Wnt signaling in vitro as well as in mice40, and future work should focus 

on determining the safety and efficacy of this compound in humans as well as developing other 

structures that elicit similar effects. As mentioned above, Dkk-1 has only shown a pathological 

role in certain tumors. Some cancers do not respond in this manner to Dkk-1, such as colorectal 

cancers, which are promoted by Wnt signaling. For example, Qi et al. showed that 

overexpression of Dkk-1 by colon cancer cells reduced tumor growth in a nude mouse model of 

colon cancer41, suggesting that elevated Dkk-1 in the tumor microenvironment could have 

positive impacts for patients with certain malignancies. This observation highlights the necessity 

to better understand how different tumors respond to Dkk-1. A better understanding of which 

cancers elicit aggressive or invasive phenotypes in the presence of Dkk-1 would help guide the 

design of clinical trials to pharmacologically target MSC derived Dkk-1 following chemotherapy 

treatment, thereby preventing effects of MSC derived Dkk-1 on tumor phenotype. Given the 

known overexpression of Dkk-1 in various cancers, the novelty of our findings lies in the 

observation that MSCs can also express this protein, and to a greater extent in the context of 

chemotherapy treatment. Future studies will need to be performed to determine whether Dkk-1 

is elevated by MSCs within the tumor microenvironment in vivo and whether chemotherapy 

elicits the expression of other molecules derived from MSCs that could have negative outcomes 

in the tumors of patients undergoing cytotoxic cancer therapies. 

In summary, the findings discussed in Chapters II through IV illustrate the dynamic and 

responsive nature of stromal cells of the bone marrow microenvironment to physiologic stimuli, 
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including chemotherapy induced stress. MSCs and osteoblasts react to cellular stress in ways 

that can impact the health and homeostasis of various tissues within our bodies which regulate 

necessary functions such as hematopoiesis and bone development. The supportive nature of 

MSCs to various processes in vivo have prompted their use in transplantation, with their 

inclusion needing to be further optimized prior to a broader implementation clinically. 

Specifically, an increased mechanistic understanding of how the properties of MSCs are altered 

during in vitro expansion needs to be obtained, for the practical purpose of efficient cell 

generation without negatively altering supportive MSC properties. Furthermore, MSCs have 

been shown to regulate the activity of malignant cells in vivo, a process that could be targeted 

pharmacologically. This process requires further investigation in various contexts, such as 

during chemotherapy treatment. Such an understanding could lead to new approaches to treat 

tumors, initiated by a hypothesis regarding the contribution of stromal cells to regulating tumor 

phenotype following chemotherapy treatment. More studies need to be performed to understand 

how chemotherapy induced stress alters the ability of bone marrow stromal cells to perform their 

homeostatic functions, and how these events can be modulated in a clinical setting. 
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